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ABSTRACT 

To investigate the relationship between alongshore rip channel migration rates and 

alongshore sediment transport rates, multi-year surf-zone video and wave datasets are 

examined at three sites along Monterey Bay, on the coast of California.  Time-averaged, 

rectified video images are used to estimate daily rip migration rates, and the CERC 

formula is used to compute concurrent bulk alongshore sediment transport rates.  

Correlation coefficients between daily rates of transport and migration are low, but they 

improve with frequency-based filtering.  While higher frequency migration events (on 

time scales shorter than eight days) are often obscured below the “noise floor,” longer 

period oscillations (spring/neap tidal and seasonal cycles) show up more clearly.  

Cumulatively summed mean rip migration distance and net alongshore sediment transport 

correlate well (with correlation coefficient r = 0.76 – 0.94), indicating that an 

approximately linear relationship exists at longer timescales. 

To examine the nature of megacusp formation on rip channel bathymetries and 

identify dominant sediment transport components, five years of surf-zone video and 

ADCP wave data are analyzed and the XBeach 2DH nearshore model is applied in a 

series of simulations over realistic bathymetries.  XBeach is shown to hindcast measured 

shoreline change with moderate skill for lower wave energies.  A process-based analysis 

is used to identify significant forcing terms at mean, infragravity, and very-low-frequency 

timescales.  Observations and model results both suggest that megacusps can form 

shoreward of either rip channels or shoals, depending on forcing conditions.  In all model 

simulations, mean advective sediment transport plays the most important role in the 

creation of megacusps.   
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I. INTRODUCTION  

The surf zone is a highly complex and dynamic physical environment in which a 

continuously changing spectrum of wind waves, swell, and longer timescale oscillations 

act to generate complicated flow fields, suspend and transport sediment, and reshape the 

beach and bathymetry.  Despite this complexity, coherent and quasi-uniform patterns 

such as alongshore bars, rip channels, and beach cusps are often found at most coastal 

locations.  Decades of research have gradually shed light on some of the many mysteries 

of the nearshore environment, but there are still innumerable questions remaining to be 

answered. 

The present dissertation focuses on rip channels and beach megacusps, two 

related nearshore features that are commonly seen along the steep beach morphology of 

southern Monterey Bay, on the California coast (Fig. 1).  Rip channels are cross-shore-

oriented depressions created in a barred or terraced bathymetry by offshore-directed rip 

currents, which commonly occur when shoaling waves approach consistently normal to 

the shoreline.  Megacusps are large, concave erosional patterns that sometimes develop 

on a beach in the presence of rip channel bathymetry and usually have alongshore 

spacing comparable to that of the rips.   

The first of the two major sections of this study (Chapter II) addresses the 

alongshore migration of rip channels and its correlation with alongshore sediment 

transport.  The principal hypothesis is that there is a linear relationship between 

alongshore migration and sediment transport rates, which are most strongly correlated at 

longer (seasonal and yearly) timescales.  The investigation examines one to three years of 

time-averaged surf-zone video images from three sites along southern Monterey Bay, 

using them to track the alongshore positions of multiple rip channels over time.  Wave 

data from offshore buoys are shoaled and refracted to the surf zone and used to estimate 

alongshore sediment transport rates for the same periods as the video data.  Several 

different types of filtering techniques are applied to the estimated migration and transport  
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rate time series, which are then correlated at multiple timescales.  The material contained 

in this chapter has been accepted for publication in the journal Marine Geology (Orzech, 

Thornton, MacMahan, O’Reilly, & Stanton, 2010). 

The second major section (Chapter III) investigates basic questions about the 

formation of megacusps on rip channel bathymetry.  The principal hypothesis is that 

megacusps can form shoreward of either rip channels or shoals, as determined by the 

combined effects of existing bathymetry shape, mean wave energy, and average tidal 

elevation.  The analysis calibrates and evaluates the recently developed, depth-averaged 

coastal sediment transport model XBeach using measured data from Sand City, 

California, then applies the model to simulate both types of megacusp formation.  

Multiple examples of both “rip-opposite” and “shoal-opposite” megacusps are identified 

in time-averaged surf-zone video, and concurrent wave data are used to identify the 

climates associated with each megacusp type.  The model is adapted to perform a 

process-based analysis of advective and diffusive sediment transport contributions for 

three selected cases, at two-hour-mean, very-low-frequency (VLF), and infragravity 

timescales.  The material in this chapter will be submitted for publication to the journal 

Coastal Engineering by the end of May 2010. 
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II. ALONGSHORE RIP CHANNEL MIGRATION AND 
SEDIMENT TRANSPORT 

A. INTRODUCTION 

The causal relationship between nearshore flow processes and alongshore 

migration of rip channels is highly complex.  Small-scale changes in rip channel 

morphologies that occur on hourly or daily timescales are too complicated to be well 

simulated at this time.  At timescales of months to years, however, a quasi-linear 

relationship may develop in which seasonal variations in climatology become dominant 

and generate large scale, proportional shifts of rip channels.  The subsequent analysis 

demonstrates this relationship by measuring rip migration and estimating concurrent 

alongshore sediment transport, exploring both shorter (tidal) and longer (seasonal) 

timescale trends and examining correlations.  Rip channel migrations are measured with 

time-averaged video imaging techniques, while alongshore transport is estimated by 

transforming measured deep water wave spectra to shallow water using a spectral wave 

propagation model and then applying a standard bulk transport formulation.  The analysis 

focuses on three sites in southern Monterey Bay, California (Fig. 2). 

1. Rip Channel Migration 

When incoming waves approach a barred beach from a near shore-normal 

direction, offshore-directed rip currents can develop and cut channels through the sandbar 

(Aagaard, Greenwood, & Nielsen, 1997; Brander & Short, 2001; MacMahan, Thornton, 

& Reniers, 2006).  Shoreward of the bar, feeder currents converge into the rip from both 

sides, propelled by wave radiation stresses and alongshore setup gradients (Bowen, 

1969).  Offshore, channel flow diverges and weakens, forming a rip head that can extend 

beyond the outer surf zone.  Rip channels on open coasts tend to occur simultaneously 

over relatively long stretches of beach with quasi-regular spacing.  Herein, a grouping of 

similarly spaced rip channels over an alongshore distance of 1 to 2 km will be designated 

a “rip field.” 
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For the past two decades, rip channel location, width, and behavior have been 

measured using video imaging techniques introduced by Lippmann & Holman (1989).  

Because nearshore wave breaking is depth-dependent (Thornton & Guza, 1983), it tends 

to be concentrated over shallow-water shoals in the surf zone.  In rectified, time-averaged 

(timex) surf-zone images, the regions of persistent wave breaking over shallow sandbars 

appear as white bands of surface foam.  When rip channels are present, the white bands 

are interrupted by darker patches with little or no wave breaking, a consequence of the 

channels’ greater depths.  This makes it possible to trace the rip channels’ subsurface 

locations by tracking variations in the intensity of image pixels (Lippmann & Holman, 

1989; van Enckevort & Ruessink, 2001).  The alongshore locations of intensity minima 

in the bar have been shown to correspond well with those of the underlying rip channels 

(Ranasinghe, Symonds, & Holman, 1999, Ranasinghe, Symonds, Black, & Holman, 

2004).   

Most rip channel research has focused on the wave conditions under which rips 

develop, while less has been done to analyze and model the alongshore motion of 

existing channels.  Several studies have directly or indirectly monitored longer term rip 

motion in the field.  Short (1985) described visual observations of rip locations for 

nineteen months along Narrabeen Beach, Australia.  Ruessink, van Enckevort, Kingston, 

& Davidson (2000) measured the cross-shore and alongshore motion of crescentic bar 

systems on an open coast with rectified video images and cross-shore bathymetry profiles 

over a six-week period at Egmond, the Netherlands.  They found that migration rates 

approached 100 m/day owing to large incident wave angles and that the rates were 

proportional to the alongshore component of the deep-water energy flux. Bogle, Bryan, 

Black, Hume, & Healy (2001) used rectified video images to track rip channel formation 

and evolution for 11 months at the 2 km pocket beach at Tairua, New Zealand and found 

a mean migration rate of 14 m/day averaged over selected storms.  Rip channel migration 

speeds ranging from 2–20 m/day were measured using a four-year video data set at the 

2.5 km embayed Palm Beach, Australia (Ranasinghe et al., 1999; Holman, Symonds, 

Thornton, & Ranasinghe, 2006). These authors noted that periods of high wave energy 

occasionally caused the rip channel bathymetry to “reset” itself, with all channels 
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disappearing for a period of hours to days and then re-emerging at different locations.  

The individual rip channels were found to persist an average of 46 days.  In contrast, 

along the nearby, relatively long, straight Surfers Paradise Beach, rip channels migrated 

5–50 m/day and persisted only eight days on average (Turner, White, Ruessink, & 

Ranasinghe, 2007). 

Larger wave heights and more oblique angles of incidence, from either swell or 

locally generated wind waves, result in greater alongshore currents and rates of sediment 

transport (e.g., Komar, 1998). The relationship with rip channel migration appears to be 

more complex, particularly on hourly to daily timescales.  Once a rip channel has been 

established, the morphology and flow dynamics tend to positively reinforce each other, 

leading to a relatively stable channel in a fixed location (Murray, 2004).  Holman et al. 

(2006) find that eight-day average rip channel migration rates can be linearly related to 

predicted alongshore current velocities with r2 = 0.78. 

Few modelers have focused specifically on the propagation of rip channels and its 

dependence on alongshore sediment transport.  A simplified view of these processes 

suggests that they should be linearly correlated, at least to first order (Fig. 3).  Smit, 

Klein, & Stive (2003) found a direct relationship between wave incidence angle and rip 

migration direction using a process-based model with an idealized bathymetry.  However, 

no attempt was made to physically verify this relationship with field data. Ruessink et al. 

(2000) used complex empirical orthogonal function analysis (CEOF) to calculate 

crescentic bar migration during six weeks at the Egmond site, but noted that such a 

procedure only works for relatively uniform wave conditions with regularly spaced rip 

channels.  Klein & Schuttelaars (2006) modeled crescentic bar systems and found that rip 

migration rates correlated with the alongshore wavelength of the crescentic bars.  

Herein, it is hypothesized that the alongshore migration rate of rip channels may 

be expressed as a linear function of the local alongshore sediment transport rate over 

longer timescales.  Measuring this correlation requires accurate estimates of both 

migration rates and alongshore transport rates. 



2. Alongshore Sediment Transport 

Alongshore sediment transport has been analyzed and modeled for decades, and a 

variety of formulations have been developed to predict it.  The bulk transport formula 

developed by the Coastal Engineering Research Center (CERC; U.S. Army Corps of 

Engineers, 2002) is among the earliest and most widely used.  It provides a cross-shore- 

and depth-integrated estimate of the total alongshore sediment transport rate, qs, based on 

alongshore wave momentum flux and requires only the cross-shore transport of 

alongshore wave-induced momentum (radiation stress), Syx, and phase speed at breaking, 

Cb, as input parameters.   

 6

,s CERC yx bq KS C=         (1) 

where K is an empirical, dimensional constant.  

In the following sections, the study site and methods are described, then results 

and correlations are presented and significant findings are discussed in greater detail.  An 

error analysis is included in the appendix. 

B. STUDY SITE AND INSTRUMENTATION 

Monterey Bay, California, is an ideal location for the study of rip channels and 

associated beach processes (Thornton, Sallenger, & MacMahan, 2007).  Waves refract 

over the Monterey Bay submarine canyon (Fig. 2) and consistently approach the 

shoreline from near shore-normal, resulting in year-round rip fields and relatively weak 

alongshore currents (typically < 0.5 m/s).  For most of the year, deep water swell waves 

generally approach the Monterey Bay from the northwest, generated by the energy of 

western Pacific tropical cyclones in the summer and fall and northern Pacific storms in 

the winter.  This pattern is episodically interrupted during the winter months, when larger 

tropical weather systems approach the California coast directly from the west.  The one-

year-return-period root-mean-square (RMS) wave height at breaking is approximately 3.5 

m.  There is an order of magnitude variation in wave energy along the shoreline, owing to 

wave refraction and sheltering by Pt. Piños headland.  Mean rms breaking wave heights 

range from under 1 m at Monterey in the south to over 2 m near mid-bay.  This creates a 
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concomitant variation in alongshore morphodynamic length scale, with rip channel 

spacing increasing from south to north (Thornton et al., 2007).   

Along much of the shoreline, a steep (approximately 1:10) beach gradually curves 

out to a 1:100 low tide terrace, then steepens to about 1:20 offshore of the bar 

(MacMahan, Thornton, Stanton, & Reniers, 2005).  Maximum tidal range is about ±1.5 

m.  Following the classification of Wright & Short (1984), the alongshore morphology is 

characterized as transverse-barred with regular incisions by rip channels.  Alongshore rip 

spacing varies from approximately 100 to 500 m, and large-scale beach megacusps have 

comparable alongshore lengths.  Mean grain size increases from 0.1 mm at the Monterey 

wharf to 0.4 mm north of Marina, with an additional ±0.05 to 0.1 mm variation across the 

surf zone at any given location. 

Since 2001, the Naval Postgraduate School (NPS) has maintained several video 

camera towers continuously recording surf-zone images along the southern half of the 

Monterey Bay shoreline. The present study will analyze video data from sites at Sand 

City, the former Stilwell Hall (on Fort Ord), and Marina (Fig. 2).  At each site, five-

image datasets are produced every 20 minutes by Eltec “MiniHypercam” b/w video 

cameras, which internally process 800x600 pixel images at approximately 10 Hz to 

generate a time-exposure pixel intensity mean, a standard deviation, and a single 

snapshot, as well as images of maximum and minimum pixel intensity.  Camera 

calibration, ground truthing, and image rectification procedures follow those outlined for 

Argus camera systems by Holland, Holman, Lippmann, Stanley, & Plant (1997).  At 

Sand City, cross- and alongshore pixel resolution are about 0.5 and 11 m per pixel, 

respectively, at mid-range (400 m) from the camera tower and 1.0 and 19.8 m, 

respectively, at the alongshore edges of the view fields (750 m).  At Stilwell and Marina, 

mid-range (500 m) resolution values are about 0.6 and 9.1 m, and long-range (1000 m) 

values are 1.3 and 29 m, respectively.  The beach and nearshore topography along 

southern Monterey Bay has been extensively measured, providing detailed records that 

can be used to validate video-based morphology estimates.   

Spectral wave data are available from several offshore buoys (National Oceanic 

and Atmospheric Administration, 2010a; Coastal Data Information Program, 2010).  NPS 
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also operates acoustic Doppler current profilers (ADCPs) along the 13m depth contour 

offshore of the Sand City and Marina video towers.  Each ADCP returns continuous 1 Hz 

time series of velocities over the water column and pressure.   

C. METHODS 

1. Tracking Rip Migration 

Video images from three NPS cameras at Sand City, Stilwell, and Marina, are 

used to identify and track rip channel locations.  The Sand City and Stilwell video 

datasets encompass three years (Nov 2004–Nov 2007), while the Marina images cover a 

single year (Jan 2007–Jan 2008).  The measurement procedure followed here parallels 

that described by Holman et al. (2006).  Rip locations are manually identified by visually 

selecting and marking off intensity minima on alongshore transects through the daily 

rectified timex images (see, for example, Fig. 4).  The subjective error of this procedure 

was first estimated by having a 110-day section of video record (Stilwell, 2004–5) 

analyzed independently in this manner by Mark Orzech and Ed Thornton along with two 

graduate students (Table 1).  The average user-associated RMS digitization error for rip 

locations marked by all four subjects ranged from 10.1 m near the cameras to 12.1 m near 

the far edges of the rectified images.  Overall user-associated digitization error is 

estimated to be 11.5 m, which is essentially the same error found by Holman et al, 

(2006).   

By recording channel positions from sequential, daily-averaged images, a 

timestack database is compiled for each site, tracking the development, migration, and 

extinction of rips in the field of view of the video cameras (Fig. 4).  A representative 

migration rate for each date is obtained from each timestack by computing three-point 

slopes of each continuous rip location timeline on that date, then taking the ensemble 

average across the rip field of these rates of change.  The alongshore averaging technique 

allows the varied motions of multiple rips to be represented by a single time series and 

also contributes to reducing subjective errors inherent in the rip-marking process (see 

appendix).   
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High waves, large incident angles, and strong alongshore currents can 

occasionally wipe out a rip channel bathymetry, completely filling in all channels.  After 

a period of hours to days, the channels generally re-form, often in different locations.  

Such events are called resets and are identified in rip location time series where timelines 

break and/or shift dramatically alongshore (Fig. 5).  Resets are relatively rare in 

Monterey Bay compared with previous investigations, occurring one to two times per 

year.  Identification of resets with video is not always reliable, as reset periods tend to be 

associated with inclement conditions and more frequent video “whiteouts” due to heavy 

fog, rains and larger waves that break across the entire surf zone and obliterate the images 

of rip channels.  An examination of offshore swell and local wind wave data for each 

reset period identified in Fig. 5 does not reveal any consistent conditions that might have 

led to the shifts.  Relatively high, long-period waves (Hrms = 1.5–3.5 m; Tp > 15 s) do 

appear to be present during each reset.  However, wave directions are inconsistent:  three 

resets have wave approach angles from 0 – 3º south of shore normal, while one (Marina 

in December 2007) sees mean angles exceeding 7º south, and another (the Stilwell site in 

September 2007) has swell approaching from 3º north.  Estimated alongshore transport 

forcing due to local wind waves is less than ten percent of that due to swell in all cases.  

The infrequent occurrence of resets in southern Monterey Bay likely results from the 

region’s consistently small wave incident angles and associated weak alongshore 

currents, which are rarely strong enough to obliterate rip channels. 

Alongshore flow in the surf zone may also include contributions driven by the 

shear of currents in deeper water, which are not included in the present analysis.  

Notably, mean alongshore velocities measured outside the surf zone by the Sand City 

ADCP can flow in the opposite direction of the predicted wave-induced alongshore 

current.  Results from the one-month 2007 Rip Current EXperiment (RCEX) at Sand City 

indicate that alongshore flow in the surf zone can be composed of both wave-induced 

currents and contributions from other coastal circulations and eddies (Brown, 2009).  The 

rip field reset observed at Sand City in December 2006 may have been partly due to 

unusually strong circulation patterns and higher transport rates resulting from these 

additional factors.  Over the five days surrounding this reset event, ADCP-measured 



alongshore currents in 13 m water depth at the site were strongly southward and up to an 

order of magnitude larger than model-predicted surf zone flows.   

2. Modeling Alongshore Sediment Transport 

Alongshore sediment transport rates are computed with the CERC formula (Eq. 

1), using wave spectra measured at offshore wave buoys and transformed to shallow 

water with a wave refraction model.  Before transport is computed, model wave output is 

first verified by comparison with in situ ADCP data over a shorter time period.   

a. Wave Inputs 

Because available ADCP wave data do not extend over the entire video 

measurement period, continuous time series are obtained at each site from a spectral 

wave refraction model (O’Reilly & Guza, 1993) operated by the Coastal Data 

Information Program (CDIP) at U.C. San Diego.  Initialized by directional wave spectra 

measured at multiple offshore buoys, the CDIP model generates hourly estimates of 

nearshore wave frequency spectra and directional moments together with significant 

wave height ( 2s rmsH H= ) and both peak and mean values of wave period and direction 

(Coastal Data Information Program, 2010).  Because of the nearly shore-normal wave 

approach along the Monterey Bay shoreline, small errors in estimated shoreline 

orientation can significantly affect the magnitude and direction of calculated alongshore 

transport (see Appendix).  In this analysis, CDIP-predicted wave information is used in 

the transport computations, and shore-normal angles are estimated from the orientations 

of beach contours measured in recent shoreline surveys conducted using an all-terrain 

vehicle (ATV) equipped with a global positioning system (GPS) (Thornton et al, 2007).   

Sixteen months of data from the Sand City ADCP, deployed in 

approximately 13 m depth, are used to assess the accuracy of wave model predictions.  

Processed ADCP output includes hourly frequency-directional spectra from which Syx, 

wave height, period, and direction can be extracted. CDIP model wave output in 15 m 

water depth is further shoaled and refracted to 13 m where the ADCPs are located, 

assuming alongshore uniform bathymetry.  The CDIP model comparisons with in situ 
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ADCP wave data at Sand City are summarized in Fig. 6.  Correlation of wave heights is 

good, with an almost 1:1 ratio between predicted and measured values.  In contrast, 

predicted (energy-weighted) mean directions correlate less well with ADCP values.  This 

is not unexpected, because the (measured and modeled) mean directions at Sand City 

only vary by about 10º, which is just slightly larger than the noise in the ADCP mean 

direction estimates. However, modeled radiation stress values, Syx, used in the sediment 

transport predictions correlate well with ADCP-initialized predictions (Fig. 6, lower left), 

with a coefficient of 0.94.  Comparisons with the ADCP at the Marina site (not shown) 

follow a similar pattern.   

b.  CERC Formula Estimates 
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Alongshore sediment transport estimates are computed using the CERC 

formula (Eq. 1), initialized at 15 m depth with CDIP wave data.  Syx is conserved from 15 

m depth to breaking depth over assumed straight and parallel contours.  The total Syx is 

obtained as the sum over the sea-swell band of frequencies (0.04–0.25 Hz) of 

contributions at each frequency Syx(f), which are computed from the product of wave 

energy spectrum E(f), second directional moment  (where 

S(f,α) is the frequency-directional spectrum and α is wave incident angle), and the ratio of 

group to phase speed n(f), using linear wave theory:    
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The subscript “15m” indicates that these quantities are evaluated offshore, 

at 15 m depth.  Using shallow water wave theory, b bgh=C , where breaking depth hb is 

determined using the method of Dean & Dalrymple (1984) by iteratively  shoaling and 

refracting input waves, assuming alongshore uniform bathymetry.  Empirical coefficient 

K is set to 0.147 m3/hour per Joule/(m·s), as recommended by the Shore Protection 

Manual (U.S. Army Corps of Engineers, 2002).  Fixed, site-specific reduction factors of 

0.5, 0.375, and 0.25 are applied to calculated transport rates at Sand City, Stilwell, and 
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Marina, based on results from Zyserman & Fredsøe (1988) in which alongshore sediment 

transport is found to significantly decrease as the spacing between rip channels narrows.  

This alters transport magnitudes only and does not affect correlations with rip migration 

rates.  Hourly values are summed over each day to obtain daily transport rates.  As might 

be expected from the earlier Syx comparisons, the correlations of CERC-based sediment 

transport rates with ADCP-based values at Sand City are high (r = 0.94; Fig. 6, lower 

right panel).  

D. RESULTS AND DISCUSSION 

Daily RMS rip migration rates are calculated for the entire rip field at each of the 

three sites (Table 2, Column 1).  Rip channels at Sand City have a three-year-mean RMS 

migration of 5.8 m/day, while those at Stilwell average 6.7 m/day over the same period.  

Marina’s rips have the largest mean RMS migration rate, 9.0 m/day, over their single 

recorded year.  Modal daily RMS migration rates at Sand City, Stilwell, and Marina were 

4.5, 4.5, and 7.5 m/day, and maximum RMS rates were 18, 22, and 30 m/day, 

respectively.  Migration rates are mostly northward at Sand City and southward at 

Stilwell and Marina. 

The ranges of absolute sediment transport rates predicted by the CERC 

formulation at each site are shown in Table 2, Column 2.  Trends seen in transport 

magnitudes among the sites are similar to those seen with RMS migration rates and are a 

result of the variations in wave energy and shoreline orientation along the coast of 

southern Monterey Bay.  Sheltered Sand City in the south has the lowest estimated mean 

transport magnitude of 68 m3/day as well as the lowest maximum transport, and transport 

is skewed heavily northward owing to the shoreline orientation relative to typical 

westerly wave approach.  The middle site, Stilwell, has a maximum estimated transport 

rate nine times larger than Sand City and a mean transport magnitude of 200 m3/day.  The 

greatest single-day transport rate, nearly 23,000 m3/day, occurred at the northernmost 

site, Marina, which has a predicted mean transport magnitude more than double that of 

Stilwell.  While overall transport at Stilwell trends slightly southward, at Marina the 

north-south sediment balance is almost zero. 



Because the mean RMS migration values are smaller than the digitization error of 

11.5 m, an analysis is performed to determine whether daily migration rates are 

distinguishable above the noise floor resulting from the rip identification process (similar 

to Holman et al., 2006).  Using the methods outlined in Section IIC, daily RMS migration 

rates are computed from 10 synthetic Gaussian noise time series with zero mean and 

RMS values equal to our digitization error.  The mean RMS migration rate for the 

synthetic data is roughly 8.5 m/day, which is of the same order as the measured RMS 

daily rates given above.  One-day migration rates will thus generally be difficult to 

distinguish from digitization noise at all three sites.  As would be expected, correlations 

with CERC formula daily sediment transport rates are consequently poor:  daily 

correlation coefficients are r=0.01, 0.44, and 0.38 at Sand City, Stilwell, and Marina, 

respectively (Table 2, Column 3).   

1.  Extended CERC Formulation 

Sand City often features significant alongshore wave height gradients (Fig. 7), 

owing to strong refraction and sheltering by Point Piños (Fig. 2).  The original CERC 

formulation (Eq. 1 and 2) implicitly neglects the resultant forcing due to variations in 

wave setup η  (alongshore pressure gradients) and radiation stress component Syy, which 

oppose and balance each other outside the surf zone but combine in shallower water to 

modify the alongshore flow (Bowen, 1969; Keeley & Bowen, 1977).  To examine if 

including transport forcing by these gradients might improve comparisons, an extended 

version of the CERC formulation is applied at Sand City.  In the extended CERC formula 

(Ozasa & Brampton, 1980; List, Hanes, & Ruggiero, 2007), a second term is added to 

account for transport forced by alongshore wave height gradients: 

⎟⎟
⎠

⎜⎜
⎝ ∂
−+=

y
CKSq bbyxCERCexs, )cos(α

β
⎞⎛ ∂HHK brmsbrms ,

2/5
,2     (3) 

where K2 is a semi-empirical function of sediment density and porosity, Hrms,b is the RMS 

wave height at breaking, β  is the average beach slope across the surf zone, and αb is 

wave incident angle at breaking.   
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yAlongshore wave height gradient , /rms bH∂ ∂  is estimated at Sand City by 

dividing the difference between CDIP-predicted Hrms values at Sand City and Stilwell by 

4000 m (Fig. 7).  An example of the relative distribution of transport rates due to the 

additional forcing, as well as its effect on the overall transport rate distribution at Sand 

City, is provided in Fig. 8.  Calculated alongshore transport due to wave height gradients 

at the site is up to 20% of that obtained for radiation stresses alone and is always to the 

south. However, the mean of the /H y∂ ∂  CERC contribution (1 cu m/day) is only 5% of 

the mean of the original CERC rates (-20 cu m/day) (Fig. 8).  With the expanded 

transport formulation, the daily migration-transport correlation coefficient for periods 

excluding resets remains just 0.01.  For this reason, the expanded formulation is rejected; 

all reported sediment transport estimates are based on the original CERC formula. 

2. Noise Filtering Techniques 

To resolve the noise problem described above, four different filtering techniques 

are used that examine rate correlations from different perspectives.  First, a simple 

running average technique is applied to compute migration and transport rates over a 

longer time step that exceeds the noise floor. Second, a low-pass filter with varying cut-

off frequencies is applied to the complete time series of mean daily migration and 

transport at each site to remove high frequency noise effects and focus on longer-term 

trends.   Third, correlations are performed only including days with the highest 10% of 

transport rates for each site, anticipating that there is a threshold of transport required to 

initiate rip channel migration. Fourth, daily rates are cumulatively summed, a method 

which is shown to be equivalent to applying a graduated low-pass filter that also damps 

high frequency noise and emphasizes seasonal oscillations.  In all cases, reset events are 

excluded from the analysis.  This four-part analysis is followed by a brief discussion of 

the anomalous Sand City site, an idealized migration-transport relationship, and tidal 

signatures in rip migration. 
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a. Time-Averaged Filtering 

Uncertainty in the measured migration rates is reduced by averaging the 

daily rates over longer intervals (in a manner similar to Holman et al., 2006).  It is 

determined that eight-day-averaged rates are required for migration values to be well 

distinguished from digitization noise error.  For eight-day averaged synthetic Gaussian 

migration time series, the RMS migration rate is determined to be approximately 1.4 

m/day, with a 95% exceedance value of 2.2 m/day.  For inter-reset periods, the eight-day 

averaged RMS rip migration rates range from 2.2 m/day at Sand City to 4.7 m/day at 

Marina, all of which are at or above the 95% confidence limit for the synthetic noise.  For 

all days and all sites combined, 60% of eight-day mean migration rate magnitudes exceed 

the corresponding eight-day RMS noise rate.  The correlations of CERC-estimated eight-

day-averaged transport rates with the corresponding rip migration rates for inter-reset 

periods are listed for each site in Table 2, Column 4.  At the anomalous Sand City site, 

despite the longer averaging periods, the correlation of migration and CERC model 

transport rates is still only 0.06.  Nearly all calculated mean daily sediment transport rates 

are directed northward at this location (skewness of rates = -3.3; see Fig. 8), while in 

contrast, 41% of daily mean migration rates are toward the south and migration rates 

have a slightly southward skewness (+0.07).  At the more exposed Stilwell site, a higher 

correlation, r=0.60, was found between daily eight-day-averaged sediment transport and 

rip migration rates.  Alongshore transport rates for the single recorded year at Marina 

have a similar correlation, 0.58. 

b. Low-Pass Filtering 

A generalization of time averaging is examined by applying a fourth-order 

Butterworth, zero phase-shift, time-domain low-pass filter to the rip migration and CERC 

model sediment transport rate time series, and then recomputing the correlations.  

Filtering out frequencies above 1/(8 days) only increases the inter-reset time series 

correlation for daily rates at Sand City to r=0.06, confirming the anomalous nature of the 

site.  In contrast, it significantly improves them to r=0.66 at Stilwell, and r=0.60 at 

Marina (Table 2, Column 5).  As an example, pre- and post-filter time series are 
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compared for the Stilwell site in Fig. 9.  Correlation values for low-pass-filtered 

migration and transport rates at each site are plotted against cut-off filter frequency in 

Fig. 10, with cutoff frequencies ranging from 1/(360 days) to 1/(5 days).  As expected, r 

generally increases as more high frequency energy is excluded (though correlations at 

Sand City only reach 0.33).  The highest correlations are found at 1/(360 days) for the 

three-year dataset at Sand City, at 1/(90 days) for Stilwell and close to 1/(25 days) for the 

shorter, one-year Marina time series.  The maxima do not always occur at the yearly 

frequency because of the datasets’ relatively short length and the skewed nature of the 

data, in which most of the migration occurs over three winter months.   

c. High-Energy Filtering 

An examination of daily rip migration and sediment transport rate time 

series suggests that migration may lag behind transport, particularly during the milder 

spring and summer wave climate at the Stilwell and Marina sites.  In general, a gradual 

southward sand transport begins in the early spring at both sites but is initially 

accompanied by little or no southward rip migration until later in the summer. At the 

Stilwell site from July-September in 2005 and 2006, daily rip migration rates are near 

zero (Fig. 9, upper panels), while calculated daily sand transport rates average about 200 

m3/day toward the south.  At the end of these periods, however, daily rates jump to 500 

and then 800 m3/day southward, coincident with the sudden shifts to higher rip migration 

rates in the same direction.  At Sand City, calculated mean sand transport is 75 m3/day for 

the same slow periods, after which it abruptly doubles to over 150 m3/day.  At the Marina 

site in 2007, estimated sand transport averages around 400 m3/day for July to early 

September, then spikes to 1600 m3/day in early September and October, at roughly the 

same time as daily migration rates begin to surpass 10 m/day.   

These results suggest that there may be a critical alongshore sand transport 

rate for initiation of measurable alongshore rip migration that is usually not produced by 

the smaller summer waves in Monterey Bay.  However, this rate is most probably site-

specific and dependent on additional factors such as rip channel spacing, grain size, and 

beach slope.  For exposed sites like Stilwell and Marina, the critical transport rate appears 



to be approximately 500–1000 m3/day, but at sheltered Sand City it may be significantly 

less owing to the finer sand size.  Rip channel spacing clearly plays a role in determining 

its estimated value (via the transport reductions mentioned in Section IIC).   

If such a critical alongshore transport rate exists, correlations that included 

only higher energy days would be significantly better than those for the entire migration 

and transport dataset for a given location.   To test this, the original migration and 

transport rate datasets are restricted to days with the highest 10% of alongshore transport 

rate magnitudes at each site (i.e., greater than 130 m3/day at Sand City and 800 m3/day at 

Stilwell and Marina).  Relative to the original time series, correlations for the limited 

datasets increase to r=0.23 at Sand City, r=0.66 at Stilwell and r=0.54 at Marina (Table 

2, Column 6).   

d. Cumulative Summing 

Cumulatively summed daily migration rates are next compared with 

cumulatively summed net transport rates for inter-reset periods at each site.  The summed 

migration rates represent the average displacement of all the rips in a rip field from their 

most recent post-reset positions at a given time (i.e., mean migration distance), while the 

summed transport rates provide an estimate of the net amount of sediment that has moved 

past an arbitrary cross-shore transect at the measurement site since the last reset event 

(i.e., net alongshore transport).   
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The summing process is equivalent to a low-pass filter, as may be 

illustrated by representing rate data as a Fourier series, s n n
n

q A A n tω ϕ
=

= + −∑ , in 

which φn is the phase of the sinusoidal component at frequency nω1 with amplitude An, 

and the constant term A0 represents the mean migration or transport rate.  Integrated (i.e., 

summed) over time,  
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sin( )n
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n

Q q dt A t n t
n
A ω ϕ
ω=

= = + −∑∫     (4) 

The lower frequencies (nω1 < 1) are amplified by the factor 1/nω1 while the higher 

frequencies (nω1 > 1, corresponding to periods less than 6.28 days) are increasingly 
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damped.  Cumulative sums of migration and transport rates thus damp high frequency 

noise and emphasize longer-period, well-correlated seasonal trends.  When Eq. 4 is 

applied to rate data from the Stilwell site, yearly oscillations are amplified over 200 times 

by the filtering process relative to single-day cycles, while monthly oscillations are 

amplified 30 times.  The integrated total Qs now also includes a linearly increasing 

component A0t that, if nonzero, will accumulate with time and ultimately outpace all 

oscillatory contributions.  As will be seen below, this linear trend can have a strong 

influence on correlations of cumulatively summed data.   

Summed mean migration distances (for inter-reset periods) are plotted 

together with summed net sediment transport in Fig. 11, with a separate panel for each 

site. The calculated net transport generally follows the mean rip migration.  The seasonal 

signatures of large scale climate forcing are clearly visible in the mean migration and net 

transport patterns of Fig. 11, particularly for the more westward facing Stilwell and 

Marina sites.  At Stilwell (with a shore normal of 290º), a gradual southward transport 

and migration in the spring and summer months accelerates in the fall as larger northern 

swell begin to arrive.  This trend is sharply reversed in November to January of each year 

by intense, relatively short-term migrations toward the north, forced by the large, storm-

generated western swell that impinge on the coastline with a southerly approach angle 

(Fig. 12).  At Marina (shore normal 278º), a very similar pattern was recorded for 2007, 

marked by an extremely sharp northward reversal in early December that coincided with 

the arrival of an intense winter storm out of the west.  In contrast, Sand City’s 

northwestward-facing shoreline (shore normal 310º) is subject to an almost year-round 

southerly approach angle for incident waves and a consistent northward mean flow along 

the shoreline.  Only in the fall and early winter months is the northward trend briefly 

reversed by the arrival of large northern Pacific swell.  (See the appendix for discussion 

of wave directional errors and the lack of seasonal transport patterns at Sand City.)   

At Sand City, cumulative migration and net transport are both heavily 

biased northward, and seasonal trends are missing from the calculated sediment transport 

record.  At the Stilwell and Marina sites, transport directions are more balanced, with 

clearer seasonal variations.  The maximum rip field displacement between resets is 400 m 



(northward) at Sand City, but only 200–300 m (southward) at Stilwell and Marina.  In 

contrast, the net transport for the period at Sand City (3.3 x 104 m3 ) is significantly less 

than values for Stilwell (5 x 104 m3 ) and Marina (105 m3).  The pronounced seasonal 

variations in cumulative migration and net transport that occurred in 2004–2005 at 

Stilwell are significantly milder for 2006–2007.  This seasonal variation is prominent in 

the 2007 cumulative migration record at Marina but less apparent in the calculated net 

transport.  The lag of mean rip migration behind net sediment transport that was 

described in the preceding section is visible on Fig. 11 in the summer and fall of each 

year, most clearly at Stilwell and Marina.  It also introduces an offset in the linear best-fit 

line plotted for those sites in Fig. 13. 

Correlations of mean rip migration and calculated net sediment transport 

for inter-reset periods are higher than those obtained by any of the three preceding 

filtering methods (Table 2, Column 7).  Correlation coefficient r reaches 0.94 at Sand 

City, 0.76 at Stilwell, and 0.87 at Marina.  The high correlation at Sand City is initially 

surprising, given the poor comparison of other filtered migration and sediment transport 

rates relative to the other two sites.  However, further examination shows the result to be 

heavily influenced by the strong northward trends of migration and transport at this 

southernmost site.  When the linear trend is removed from both mean migration and net 

transport time series, r drops to 0.18 at Sand City, while detrended values at Stilwell 

(r=0.62) and Marina (r=0.34) are less severely affected.   

The high correlation of mean rip channel migration with net alongshore 

sediment transport calculated with the CERC formula corresponds to previous results.  

Holman et al. (2006) found high correlation with a proxy of alongshore current 

proportional to , which is similar to the b2(f) input to the radiation stress used 

in the CERC formulation, and Ruessink et al. (2000) found migration proportional to 

alongshore wave power, which is implicit in the CERC formulation.   

α2sin2/1H

It should be noted that correlation values from the low-pass filter imposed 

by cumulative summing are larger than the corresponding Butterworth-low-pass-filtered 

maxima shown in Fig. 10, because the summing process includes some contributions 
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from every frequency component.  These results support the existence of a fundamental 

connection between migration and transport at seasonal timescales.    

3. Anomalous Sand City 

Although an exhaustive investigation is beyond the scope of the present analysis, 

it seems appropriate to suggest reasons for the anomalously poor correlation results at the 

Sand City site.  In the author’s view, the mismatch between transport and migration is 

most likely due to site-specific measurement errors, the effects of neglected local 

shoreline irregularities, and the site’s unusual wave characteristics.  Measurement errors, 

including outdated bathymetries and incorrect estimates of shoreline orientation, are 

discussed further in the appendix.  An important break in the shoreline occurs at Tioga 

Avenue, 400 m north of the Sand City site, where large amounts of concrete and other 

construction materials have been dumped onto the beach and surf zone.  It is probable 

that the resulting mini-peninsula blocks at least some southward transport toward the 

Sand City site, which reduces the seasonal southward rip migration shown in the top 

panel of Fig. 9 relative to the other two sites and may also act to focus or reflect shoaling 

waves.  There is a storm drain outfall 50 m south of the Sand City camera tower, which 

scours a channel into the beach face each winter and contributes additional sediment to 

the surf zone.  Finally, the Sand City location features both a significant alongshore wave 

height gradient and generally lower wave energies than are found farther north.  As 

shown in this study, the inclusion of 
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yH∂ ∂  in the expanded CERC formula can change 

alongshore transport rates by up to 20%; however, a true estimate of its effects may 

require a more accurate local gradient rather than the large-scale average used here.  The 

Sand City site’s milder wave climate results in correspondingly slower bathymetric 

change.  Video-estimated rip migration rates are closer to the noise floor than at Stilwell 

and Marina and thus also more likely to be obscured. 

4. The Migration-Transport Relationship 

A highly simplified picture of migrating rip channels is presented in Fig. 14 to 

illustrate the quasi-linear relationship between alongshore transport and rip migration.  

For such an idealized rip field, a mean migration of, say, Δy = 10 m to the south can most 
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simply be represented as a translation of each rip channel by 10 m in that direction.  The 

associated net transport must fill in the northern side of each channel while removing 

sand from its southern side.  This would most likely result from a southward-flowing 

alongshore current.  Conservation of mass dictates that flow traveling southward from a 

shoal into a deeper rip will slow down, dropping some of its sediment load along the 

northern edge of the rip.  Upon reaching the rip’s southern edge, the flow must then 

accelerate onto the shoal, suspending and removing sediment.  Over the longer term, 

these variations will reshape the rip channel and shift it southward.  

In this scenario, neglecting other sources, the volume of transported sediment 

over a given period will be directly proportional to the volume of each rip channel, and 

the channel migration rate will be linearly related to the alongshore transport rate.  

Assuming an average surf-zone width of 100 m and mean rip channel depth of 2 m, 

comparable to values seen in southern Monterey Bay, a rip migration rate of 1 m/day 

would require a sediment transport rate of at least 200 m3/day.  An overall migration of 

200 m will thus need a net sediment transport volume of at least 4 x 104 m3.   Despite a 

highly simplified analysis, this estimate is of the same order as those obtained in southern 

Monterey Bay using more complex alongshore transport formulations and recorded wave 

data (Fig. 9).  The idealized estimate above assumes that all transported sediment is used 

to enable rip migration, while in reality a portion of such sediment might also come from 

regions between rips, and much of it will bypass a number of channels before finally 

settling to the bed.   

5. Tidal Effects on Migration 

Rip migration processes on weekly to monthly timescales are investigated by 

examining energy density spectra.  Migration rate time series for selected inter-reset 

periods are divided into linearly detrended ensembles of 56 days (Sand City and Stilwell) 

and 28 days (Marina), overlapped by 50%. The length of the time series was chosen to 

minimize spectral leakage at the hypothesized fortnightly spring-neap tidal cycles.  

Spectra of rip migration rates at the three sites are plotted versus frequency for oscillatory 

periods exceeding 2.5 days in Fig. 15.  The spectral noise floor is indicated (assuming 
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white noise variance for the synthetic mean RMS migration rate described at the 

beginning of Section IID), and is not significant.  For the three-year dataset at Stilwell, a 

peak occurs for a period of 28 days that is significant to at least 80 percent confidence, 

suggesting that the lunar tidal cycle may have an effect on alongshore sediment flows and 

accompanying rip migration rates.  The three-year Sand City and one-year Marina 

datasets both feature a peak near 0.073 days-1, corresponding to a period of 

approximately 14 days.  A less significant spectral peak is also visible close to 1/(7 days) 

for the two southern locations, possibly indicating that the 14- and 28-day cycles are in-

phase harmonics resulting from an asymmetric system response.   

These results suggest that there may be enhanced migration at times when the 

tidal range is greatest, and both the highest and lowest portions of the beach are subjected 

to more intense wave breaking and increased sediment suspension.  Tidal signatures 

similar to these are commonly detected in measurements of alongshore currents (e.g., 

Thornton & Kim, 1993).  Alongshore flows tend to be weak or nonexistent during lower 

tides but become stronger at higher tides (Brown, 2009), and stronger currents also 

appear to be associated with greater rip migration (e.g., Holman et al., 2006).  Field 

measurements on a macrotidal beach suggest that sediment suspension can be enhanced 

due to increased bed roughness during falling tides (Masselink & Pattiaratchi, 2000) and 

tidally generated fluctuations in the beach groundwater table (Masselink & Turner, 

1999).    

E. SUMMARY AND CONCLUSIONS 

Rip migration measurements and CERC model alongshore transport estimates are 

correlated to test the hypothesis that the alongshore migration rate of rip channels may be 

expressed as a linear function of the local alongshore sediment transport rate over longer 

timescales.  Daily rip channel locations are determined from time-lapse video images at 

three sites along southern Monterey Bay for periods of one to three years, and daily 

migration rates (averaged over all rips in the rip field) are computed.  The video 

digitization error is estimated to be 11.5 m by having four individuals identify rips on a 

110-day record.  The performance of the CDIP spectral wave propagation model is 
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validated by comparison with nearshore ADCP measurements, and model-predicted 

radiation stresses, Syx, achieve a correlation of r=0.94 with Syx values computed from 

ADCP data at Sand City.  For each site, the CDIP model is then used to refract measured 

offshore waves into the surf zone, where the CERC formula is applied to generate 

estimates of alongshore sediment transport rates.  An expanded CERC transport 

formulation that also includes effects of alongshore wave height gradients is applied to 

the Sand City site, where such gradients are significant.   

A parallel simulation conducted with random Gaussian time series indicates that 

daily rip migration rates will not generally be distinguishable above the noise associated 

with digitization.  Correlations of daily migration and transport rates are indeed relatively 

low, so several alternative filtering methods are used to compare them in ways that will 

overcome the noise barrier.  Correlations using an expanded CERC model that includes 

forcing by alongshore wave height gradients to calculate transport at Sand City are little 

changed from the standard CERC-predicted values, so that formulation is excluded from 

further consideration.  Gaussian-noise simulations identify a minimum time step of 

approximately 8 days, below which averaged rip migration rate data will likely be 

indistinguishable from digitization noise.  Rip migration and sediment transport rates 

averaged over 8 days attain correlation coefficients 50–100% higher than those found 

with daily rates.  Low-pass filtering with a cutoff frequency of 1/(8 days) gives 

coefficient values slightly better than those from eight-day-averaged rates at each site.  

Correlating only the 10% of days with the highest transport rates significantly improves 

upon daily correlation results at Sand City as well as at Stilwell and Marina.  

Cumulatively summed rates result in nearly doubled correlation values relative to daily 

rates.  Correlations at the Sand City site remain anomalously low for all filtering methods 

except cumulative summing. 

Results obtained with each filtering method provide insight into the nature of the 

migration-transport relationship.  The moderate increases in correlation values obtained 

with eight-day-averaged migration and transport rates emphasize the challenges of 

accurately representing complex nearshore processes, even after data are filtered.  The 

low-pass filtering analysis highlights important longer-period oscillations (such as tidal 
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and seasonal cycles) that might influence alongshore rip migration patterns.  Improved 

correlations of daily rates obtained under higher energy conditions suggest that there may 

be a limited range of conditions over which a linear relationship applies.  Cumulatively 

summed migration and transport rates can be used to track the mean migration of each rip 

field and the net amount of sediment transported north or south along the beach at each 

site.  Plots of these quantities suggest that rip migration might lag behind sediment 

transport, particularly in milder summer months when the minimum energy and transport 

levels necessary for migration may not be attained by the smaller waves.   On the basis of 

the high correlations obtained between cumulatively summed migration and transport 

rates, it is concluded that the alongshore migration rate of rip channels may be expressed 

as a linear function of the local alongshore sediment transport rate over longer timescales.  
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III. MEGACUSPS ON RIP CHANNEL BATHYMETRY 

A. INTRODUCTION 

Rip channels are cross-shore-oriented depressions that can develop in the surf-

zone region of a barred or terraced bathymetry, when near shore-normal waves generate 

offshore-directed rip currents (Aagaard et al., 1997; Brander & Short, 2001; MacMahan 

et al., 2006).  Closer to shore, feeder currents develop that converge into the rip from both 

sides, forced by wave radiation stresses and alongshore setup pressure gradients (Bowen, 

1969).  Rip channels on open coasts tend to occur simultaneously over relatively long 

stretches of beach with quasi-regular spacing.   

Beach cusps are crescent-shaped, concave indentations in the beach face that are a 

common sight along many coastlines.  Smaller “swash” cusps can appear on almost any 

beach and generally have cross-shore widths of around 5 – 10 m and alongshore 

wavelengths ranging from 10 – 50 m.  When rip channels are present, larger megacusps 

can form with wavelengths of 100 – 500 m that approximately match the alongshore 

spacing of the rips (Thornton et al., 2007).  Rip channel and megacusp location, size, and 

behavior can be measured on site with GPS-based survey equipment, but complete 

surveys are time-intensive, costly, and consequently less frequent.  When cameras are 

available, adequate estimates of shapes and sizes can often be obtained using video 

imaging and rectification techniques (Lippmann & Holman, 1989).   

Most visual evidence suggests that megacusp embayments are aligned with rip 

channels (e.g., Fig. 1b).  Thornton et al. (2007) found a significant but fairly low 

correlation (r2 = 0.35) between surveyed rip channel and megacusp locations along 18km 

of the southern Monterey Bay shoreline.  The maximum cross-correlation corresponded 

to a near zero lag value, implying alignment of rip channels and megacusp embayments.  

Its low value was explained by noting that the two surveys were conducted 21 days apart, 

and that this level of decorrelation would be expected for these data if rip channels and 

megacusps were assumed to act independently with time.  Other, more closely spaced 

surveys were not available.  The role of rip channel bathymetry in the development of 



beach megacusps has not been investigated in depth in the field.  Short (1979) 

hypothesized that megacusps may be either erosional or depositional features of rip 

currents, but field measurements of swash flow in this region have been too limited to 

confirm or refute this theory.   

Greater progress has been made in modeling megacusp formation processes.  

Alongshore- and depth-averaged one-dimensional (1D) models that have been applied to 

the problem allow for changes in shoreline position but can only crudely account for 

alongshore differences (e.g., Edelman, 1968; Nishi & Kraus, 1996).  Cross-shore- and 

depth-averaged 1D “line” models used in instability analyses have predicted the 

development of cusp-like shoreline features; however, they give little or no information 

about how shoreline erosion and accretion patterns are distributed across the width of the 

beach face (e.g., Falques & Calvete, 2005; Horikawa, 1988; Komar, 1998).  Some two-

dimensional (2D) models have proven effective in predicting nearshore circulations 

including rip channels (e.g., Reniers, Thornton, & Roelvink, 2004; Calvete, Dodd, 

Falques, & van Leeuwen, 2005), but they have generally worked with a fixed boundary 

for the shoreline.  Several 2D studies have measured or modeled a surf-zone counter-

circulation on the shoreward end of a rip channel and suggested that it may play a role in 

creating megacusp embayments (Haller, Dalrymple, & Svendsen, 2002; Calvete et al., 

2005; MacMahan, Thornton, Reniers, Stanton, & Symonds, 2008).  Models combining 

alongshore and cross-shore variability with an adjustable shoreline position have largely 

not been tested owing to the significantly increased complexity of the problem.   

The formation of megacusps occurs over timescales on the order of hours to days, 

while the principal wave-generated forcing periods range from seconds (wind waves, 

) and minutes (infragravity and edge waves, ) to 

somewhat less than an hour (very-low-frequency, VLF, waves, ).  

Roelvink & Stive (1989) decomposed the near-bed flow field into mean, wave-group, and 

short wave frequency components, 

Hzf 1.0~ Hzf 04.0004.0~ −

f 004.00005.0~ − Hz

SL uuuu ~~ ++= , then expanded different velocity 

moment expressions to investigate the flow and cross-shore sediment transport 

contributions due to wave asymmetry and the interaction of short-wave variance with 
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long-wave velocities.  Thornton, Humiston, & Birkemeier (1996) used a similar 

technique with field data from Duck, NC, to investigate the principal processes involved 

in generating a bar/trough beach profile and to predict cross-shore bar migration.  They 

concluded that the mean components contributed half of all surf-zone sediment transport, 

with the largest contribution coming from the alongshore current.  Using a later dataset 

from the same site, Gallagher, Elgar, & Guza (1998) also found mean transport 

components to be dominant, but found that transport due to the undertow (cross-shore 

mean flow) played the biggest role.  Reniers et al. (2004) found that intersecting trains of 

wave groups can force large-scale horizontal eddies in the surf zone with timescales in 

the VLF range and length scales the order of the surf zone width.  Although sufficient 

field data are not available to perform such a frequency-based study for a megacusp 

formation event, it is possible to use a calibrated nearshore model to perform a process-

based analysis of sediment transport forcing at these different frequency ranges.   

The present analysis focuses on megacusp formation in the presence of rip 

channels under different wave and tidal conditions, utilizing both field data and modeling 

simulations.  It is hypothesized that the sizes and locations of the megacusps in Monterey 

Bay are determined by the morphodynamic interactions between the shoaling waves and 

the local rip channel bathymetry, and that daily mean water level plays a key role in 

determining when and where megacusps form on a given beach.  The following section 

includes a description of the study site and an examination of available field data.  

Section IIIC begins with a summary of relevant model theory, which is followed by 

model calibration and testing, and then a series of simulations in which two distinct types 

of megacusps are generated.  In Section IIID, sediment transport processes for three 

selected cases of megacusp formation are decomposed to two-hour-mean, VLF, and 

infragravity timescales and examined individually to identify dominant contributions.   

B. FIELD DATA 

1. Study Site 

The study is limited to wave conditions and rip channel bathymetry similar to 

those found along the shoreline of southern Monterey Bay, California (Fig. 2).  Swell 
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waves approaching the bay are refracted over the submarine canyon and consistently 

arrive at the shoreline with a near shore-normal direction.  As a result, alongshore 

currents are generally weak (usually < 0.5 m/s), and rip channel bathymetry is usually 

present, except possibly during extreme storm events.  The maximum offshore significant 

wave height is expected to be 5 m (one-year return period) or greater, and the tidal range 

can be as large as ±1.5 m.  Because of wave refraction and sheltering by Pt. Piños 

headland, there is an order of magnitude variation in wave energy and morphodynamic 

scale from south to north along the bay.  Mean grain size increases gradually from about 

0.1mm at the Monterey wharf to 0.4 mm north of Marina, varying by an additional ±0.05 

to 0.1 mm across the surf zone.  Rip channel spacing and alongshore megacusp 

wavelengths also increase as one travels northward, from approximately 100 m at 

Monterey to 500 m near the Salinas River.  The steep (approximately 1:10) beach extends 

onto a 1:100 low tide terrace, which steepens to about 1:20 (MacMahan et al., 2005), and 

then gradually tapers to 1:50 for depths greater than 10 m.   

The following analysis focuses on Sand City, where shoaling waves and currents 

are continuously monitored by three shoreline video cameras and an acoustic Doppler 

current profiler (ADCP) deployed offshore at 13 m depth.  Several multi-investigator 

surf-zone experiments have been conducted at the site (MacMahan et al., 2005; Brown, 

MacMahan, Reniers, & Thornton, 2009), providing high resolution bathymetry data from 

a number of surveys conducted with geographic-positioning-system (GPS)-equipped 

personal watercraft (PWC) and backpack.  Offshore wave data are also available from 

buoys maintained by NOAA (National Oceanic and Atmospheric Administration, 2010a). 

2. Sand City Measurements 

The Sand City ADCP and video datasets provide qualitative insight into 

megacusp formation.  ADCP pressure and velocity data are combined to generate 

directional wave spectra, from which basic wave properties including significant wave 

height, peak period, and direction can be determined.  Surf-zone video images from the 

three Sand City cameras are first calibrated and rectified to plan view using ARGUS 

system techniques (Holland et al., 1997).  In the rectified, time-averaged surf-zone 
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images, deeper rip channels appear as darker patches while shallower shoals show up as 

white regions owing to persistent foam from wave breaking.  The alignment of these 

features with the underlying bathymetry was confirmed by Ranasinghe et al. (1999, 2004) 

and is visually apparent when measured bathymetry contours are plotted over video 

images (Fig. 16).  The approximate shoreline contour can often also be detected as a 

white line of foam running between the surf zone and the (usually darker) beach face.   

By combining rectified video images with measured wave data, it is possible to 

identify megacusp formation events and track the types of waves that tend to create them 

(e.g., Fig. 17).  Reviewing daily video datasets recorded at the Sand City site over a 50-

month period from 2005–2009, the author visually identified 26 megacusp formation 

events, in which a previously straight shoreline evolved into one with megacusps.  The 

majority (20) of these megacusp formation events result in “rip-opposite” (RO) 

megacusps, with embayments shoreward of the rip channels, and usually coincide with 

narrower neap tidal ranges, when mean daily water levels are close to MSL.  Maximum 

Hs values for these events reach 1.5 – 2 m and Tp ranges from 10 – 12 s.  The RO 

megacusp contours appear widest at mean sea level (MSL) and narrower at higher beach 

elevations, suggesting that RO embayment erosion may be greatest near mean sea level.  

In six cases, however, “shoal-opposite” (SO) megacusps are created, whose embayments 

instead are located shoreward of the surf-zone shoal regions between the channels.  These 

events tend to occur during spring tides, when larger tidal ranges and diurnal inequalities 

result in elevated mean daily water levels, and they often feature milder wave conditions, 

with Hs < 1 m.  The resulting beach megacusps appear to be centered higher on the 

beach, well above MSL.  Both types of megacusps are visible in two sample rectified 

images from the Sand City site (Fig. 18).  RO megacusps are recorded with the shoreline 

near MSL (top panel) after a period in which wave heights reached 2 m.  SO megacusps 

appear in the second image when the shoreline contour is near MSL + 1 m (bottom 

panel), following a several-day period of relatively small waves (Hs ~ 0.7 m).   These 

results suggest that wave heights and mean daily water levels may influence the 

alongshore locations of megacusp embayments.   
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On available measured bathymetries from the Sand City site, megacusp 

embayments consistently appear shoreward of the rip channels and their contours usually 

extend up the beach face to elevations several meters above MSL.  The only directly 

measured evidence of any type of shoal-opposite cusp creation at Sand City is recorded 

on several bathymetries from the 2001 RIPEX experiment, in which somewhat shorter 

wavelength “swash” cusps appear near the MSL + 2 m contour with embayments 

shoreward of both rip channels and shoals (Fig. 19).  Refractive focusing of waves by the 

bathymetry during periods of sustained higher water levels may have helped to create 

and/or deepen the SO cusps. 

C. MODELING 

1. XBeach Theory 

Nearshore morphodynamics models may generally be divided into two groups.  In 

forced process models, the hydrodynamic conditions generate complementary patterns in 

the underlying morphology (e.g., Holman & Bowen, 1982).  In contrast, for stability or 

free models (also referred to as self-organized models (Blondeaux, 2001)) the length and 

time scales of the evolving morphology generally do not match those of the 

hydrodynamics (Dodd et al., 2003).  Reniers et al. (2004) forced non-linear wave 

equations using wave groups described by a directional spectrum that generated large-

scale horizontal vortices whose alongshore length scale (O(100–500 m)) was quasi-

periodic and similar to that of the wave groups.  These long-period (O(4 min–1 hour)) 

vortical motions are referred to as very-low-frequency (VLF) motions.  For very small 

values of directional spreading, the morphology response was self-organized, but for 

values exceeding two degrees it became quasi-forced (at wave-group scales).  In this 

range, the generated rip channel spacing closely followed the alongshore scales of the 

vortices, and channel growth was enhanced by the effects of positive feedback on the 

hydrodynamics. 

Beach evolution is particularly difficult to model in two dimensions, in part 

because the process intrinsically requires a temporally variable shoreline position.  

XBeach, a recently developed 2D, depth-averaged numerical coastal model, has been 



designed to include such a moving shoreline, allowing for robust simulations of dune 

erosion, overwash, and breaching (Roelvink, Reniers, van Dongeren, van Thiel de Vries, 

McCall, & Lescinski, 2009).  The model incorporates the quasi-forced morphodynamic 

formulation of Reniers et al. (2004) and operates on wave-group timescales, 

parameterizing the sediment transport contributions of individual waves.  XBeach also 

allows for gradual changes to the back beach and dune via an innovative avalanching 

function.  It is principally designed for modeling beach change under storm conditions, 

and its performance under more moderate wave climates has not yet been fully evaluated.  

XBeach consists of a mainly first-order upwind, Fortran-based code that includes 

components for calculating wave forcing, flow velocities, suspended sediment transport 

and the resulting bed level changes.  The following three subsections provide a summary 

of relevant theory from the existing XBeach model.  Additional model modifications 

made for this study will be discussed in Section IIID. 

a. Waves and Rollers 

Wave forcing is determined by solving wave action and roller energy 

balance equations to obtain radiation stresses and then forcing.  The wave action balance 

equation sets the total change of wave action equal to the frequency-normalized 

dissipation: 

yx wA
t x y

θ
c Ac A c A ε

θ σ
+ + + = −

∂ ∂ ∂ ∂

wE

∂∂ ∂∂      (5) 

where the wave action at each location, A, is equal to the directionally distributed spectral 

wave energy, , normalized by frequency σ.  The wave action propagation speeds cx 

and cy are the sum of group velocity and current components in x- and y-directions, 

respectively, and cθ, the propagation speed in the θ-direction, accounts for both bottom 

refraction and current refraction.   
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For the present analysis, wave conditions at the offshore boundary are 

obtained by converting a 2D, directionally spread JONSWAP spectrum into a bound long 

wave energy time series that varies at wave-group timescales.  The JONSWAP-based 

spectrum is used in place of measured wave spectra in the interests of generalizing model 



results and avoiding complicated higher order effects that might result from irregular 

ADCP-based spectra.  The time series is composed of 200 frequency components, each 

of which is assigned its own amplitude, direction, and random phase.  Component 

amplitudes are interpolated from the 2D input spectrum, and wave angles are assigned 

randomly using the cumulative distribution function of the directional spreading for the 

input spectrum (van Dongeren, Reniers, Battjes, & Svendsen, 2003).   

The wave energy dissipation due to breaking follows an adapted version 

of Roelvink (1993): 
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with α=O(1), ρ representing seawater density, g the gravitational constant, and fm equal to 

a representative intrinsic frequency.  Hrms is root-mean-square (RMS) wave height, and h 

is water depth.  In this expression, following Battjes & Janssen (1978), the fraction of 

breaking waves is calculated as 
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in which γ is a user-set parameter representing the ratio of RMS wave height to water 

depth at breaking, and n is a user-set parameter with a default value of 10. 

Coupled to the wave action balance is the roller energy balance, in which 

the wave energy dissipation, wε , becomes a source term: 
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where  is the directionally distributed roller energy, and the roller dissipation, rE rε , is 

proportional to the product of the wave phase velocity and the surface shear stress 

induced by the roller.   
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b. Flow Field 

The depth-averaged velocity flow field is obtained by solving the shallow 

water wave equations (including the x- and y-momentum equations and the conservation 

of mass-flux equation), which are adapted to a Generalized Lagrangian Mean (GLM) 

formulation (Andrews & McIntyre, 1978; Feddersen, Guza, Herbers, & Elgar, 2000) in 

order to include short-wave-induced mass fluxes and return flows: 

( ) ( )
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Velocities u and v are in the Lagrangian frame (superscript L) except for those associated 

with bottom shear stresses, which are Eulerian (superscript E).  Term cf is the bed friction 

coefficient, urms is short-wave orbital velocity (calculated from computed wave energy 

and period), η is the free surface elevation, and Fx and Fy are the wave-induced stress 

gradients.  Term νh is the horizontal fluid diffusion coefficient, computed at each timestep 

as a sum of background and turbulent contributions: 

( )h b rhν
1/3ν β ε ρ= + ,       (10) ν

with user-adjustable background eddy viscosity, bν , and turbulent viscosity factor, νβ , 

each between 0 and 1 (van Thiel de Vries, 2008; Battjes, 1975).  In a recent study by 

Brown et al. (2009) at Sand City, California, a similar expression for turbulent diffusion 

(with 1νβ = , but based on wave height) was found to predict measured surf-zone 



diffusivities accurately (r2 = 0.95).  For computations, a staggered grid is employed on 

which velocities are defined at the sides of each cell while bed and surface elevations are 

defined in the center.    

c. Sediment Transport 

A depth-averaged advection-diffusion equation is used to model the 

sediment transport (Galappatti & Vreugdenhil, 1985): 
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with the depth-averaged sediment concentration, C, allowed to vary on the wave-group 

timescale.  For the present analysis, the horizontal sediment diffusion coefficient, , is 

computed in the same manner as 

hD

ν  (Eq. 10).  The adaptation time, Ts, describes the 

timescale of the sediment response to differences between the equilibrium concentration, 

Ceq, and the actual concentration, C.  It is calculated using a simple ratio of water depth to 

sediment fall velocity and limited to a value greater than or equal to 0.2 s.   

The equilibrium sediment concentration is determined from one of two 

selected formulations, both of which are tested this analysis.  The first option is the 

Soulsby-van Rijn formulation (Soulsby, 1997): 
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where the stirring velocity, , is a combination of the Eulerian mean velocity and 

near-bed short-wave orbital velocity:   

d
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It must exceed a critical threshold value, ucr, in order to initiate sediment transport via a 

nonzero Ceq.  Short-wave orbital velocity, urms, is computed from local wave height and a 



representative wave period, Trep, which is somewhat less than Tp and determined from a 

weighted average including only spectral frequencies with high energy levels.  The drag 

coefficient, , is determined from flow velocity alone (neglecting short wave effects).  

The bed load and suspended load coefficients, Asb and Ass, are functions of sediment grain 

size and density as well as local water depth.  Because the Soulsby-van Rijn formulation 

tends to predict unrealistically high sediment transport rates under large breaking waves, 

XBeach also includes a Shields-parameter-based limiter, θsf, which is used to define a 

maximum attainable stirring velocity and place an upper limit on Ceq values under 

extreme conditions (McCall et al., 2010).   

dc

The second formulation option for Ceq uses a different expression for the 

near-bed wave-breaking-induced turbulence, based on the bore-averaged turbulence 

energy (van Thiel de Vries, 2008): 
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Short-wave orbital flow effects are included here as brmsrms kuu 45.12
2, += , where the 

bore coefficient kb is a function of the short-wave bore interval, Tbore, estimated using a 

parameterized model of the wave shape (Rienecker & Fenton, 1981).  While the Soulsby-

van Rijn expression has wave-generated sediment suspension proportional to flow drag 

(i.e., forced from the bottom), in the alternate formulation it is dependent on maximum 

wave surface slope (i.e., forced from the surface), which van Thiel de Vries (2008) found 

to be better correlated with observations in wave tank experiments. 

The rates of horizontal sediment transport in x and y directions are given 

by 
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x asym

CS hC u u D hh x
∂

= + +
∂

     (15) 

 35



( )E
y asym h

CS hC v v D h
y

∂
= + +

∂
     (16) 

Eulerian velocities uE and vE are augmented by velocity asymmetry contributions (uasym 

and vasym) that account for additional sediment suspension due to wave asymmetry in the 

surf zone.  The magnitude of these terms is tuned with the user-adjustable parameter, 

ua,fac.  The rate of change in the bed level, ∂zb/∂t, is obtained by assuming conservation of 

sediment volume and is dependent upon gradients of Sx and Sy together with the bed 

porosity, p: 
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The morphological acceleration factor, fmor, has a default value of 1 but can be increased 

by the user to speed up bathymetry change at each timestep (Roelvink, 2006).  XBeach 

also includes a simple avalanching function to account for slumping of overly steep 

slopes.  When the bed slope in x or y exceeds a user-set critical value, mcr, surrounding 

bed elevations are gradually adjusted to reduce it to this value. 

As has been illustrated, the theoretical basis of XBeach is very similar to 

that of the more established Delft3D model (Roelvink & van Banning, 1994).  However, 

there are several important differences between the two.  While the Delft3D wave solver 

is essentially stand-alone, the wave action solver in XBeach is an integral part of the main 

code.  Because XBeach is based on wave action, it includes the effects of wave-current 

interaction.  Numerical schemes used in Delft3D are generally higher order, while 

XBeach relies on simple forward differencing to maintain stability.  While this implies 

that the newer model will be less accurate, it also allows for somewhat more rapid 

computation of results.  Finally, as mentioned in the previous paragraph, the 

morphological computations in XBeach include an avalanching function not available 

with Delft3D.  This makes the new model particularly well suited to simulating coastal 

erosion of the back beach, including dune undercutting and slumping. 
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2. Model 1D Calibration 

To calibrate XBeach parameters to the Sand City site, the model is initialized in 

1D with an alongshore-averaged beach profile created from the bathymetry 

measurements of the 2007 RCEX experiment (Brown et al., 2009), which is extended 

offshore to 30 m depth using a 1:50 slope.  In a total of 36 simulations varying six model 

parameters, XBeach computes the profile evolution until an “equilibrium profile” has 

been attained, defined as less than 1 mm vertical change in 10 simulation hours at all 

cross-shore locations.  Wave spectral inputs at the offshore boundary, Hm0 = 0.89 m and 

Tp = 9.8 s, are based on the average conditions measured by the ADCP at Sand City from 

2006 – 2007, reverse-shoaled to 30 m depth.  First, the Shields limiter (θsf), wave 

asymmetry (ua,fac), and suspended sediment response (Ts,fac) are optimized simultaneously 

in a set of 27 tests, with each parameter assigned three different values (all other model 

parameters are set to defaults).  Optimal site-specific values for the tested parameters are 

extracted from the simulation whose final equilibrium profile maintains the best root-

mean-square (RMS) fit to the initializing profile.  Using the optimal settings determined 

for θsf, ua,fac, and Ts,fac, values for three additional parameters are then varied individually 

in nine additional tests to fine tune the model’s performance, including the morphological 

acceleration factor (fmor), the threshold water depth (hmin), and the breaker parameter (γ ~ 

Hs/h).  In all simulations, it is found that XBeach tends to flatten the initial Sand City 

profile’s shoal terrace until it is nearly horizontal.  None of the simulations generate a 

persistent bar-trough profile, although such profiles are occasionally measured across the 

shoals at Sand City.  These model limitations are discussed further in Section IIIE. 

Final optimized values for the six tested parameters resulted in an RMS elevation 

difference of 13 cm (and maximum difference of 95 cm) between equilibrium and 

initializing profiles (Fig. 20).  Parameter ranges and optimal values are summarized in 

Table 3.  While the optimal values generally appear reasonable, both θsf and γ are 

somewhat lower than their default settings.  In simulations with hurricane waves, McCall 

et al. (2010) found an optimal value of θsf = 1, but the present simulations indicate that a 

smaller value of 0.8 is more effective under more moderate conditions.  While most field 

measurements generally suggest a value of about 0.60 for γ when using significant wave 



height (e.g., Thornton & Guza, 1982), these simulations obtain better results with a lower 

value of 0.45.  Applying the Delft3D model at the same site, Reniers, MacMahan, 

Thornton, & Stanton (2006) also found 0.45γ =  to give the best match to measured wave 

heights throughout the surf zone.  A field study by Sallenger & Holman (1985) indicated 

that γ could range from 0.41 to 0.78 across the surf zone when computed using Hs.  For 

waves breaking across a flat terrace, Raubenheimer, Guza, & Elgar (1996) observed γ 

values as low as 0.2.    

3. Model 2D Evaluation 

With optimal site-specific parameter values established, XBeach is applied in 2D 

to hindcast two cases of bathymetry evolution measured during RCEX.  The first test 

makes a quantitative evaluation of the model’s skill using measured bathymetry.  The 

second test evaluates model performance more qualitatively, comparing output 

bathymetry to rectified video images.  Additional model parameter settings used for the 

2D simulations are provided in Table 4.  To maintain computational stability, the model’s 

wave-current interaction option is turned off.  Instead, wave-current interaction effects 

are represented by increasing the eddy viscosity due to roller-induced turbulence, setting 

1ν = 0.1b and β ν =  in Eq. 10.  To help speed up computations, the bathymetry grid is 

made variable in the cross-shore direction, starting with dx = 32 m offshore and 

decreasing to dx = 4 m in the nearshore.  In both cases, input bathymetry is extended 

offshore to approximately 30 m depth using a 1:50 slope, and in the alongshore direction 

by appending a mirror image of the entire measurement region to each side.   

a. Quantitative Evaluation 

 38

The quantitative 2D model testing is conducted using data recorded over a 

ten-day period during the RCEX experiment at Sand City (Fig. 21).  The model is 

initialized with nearshore bathymetry measured on May 1, 2007, and model output is 

validated against measured bathymetry from May 11, 2007.  Two different types of 

simulations are conducted.  The first 22 simulations are limited to the approximately 3.5-

day “storm” period (May 3 – 7), anticipating that these waves were responsible for the 

majority of the bathymetry change over the ten days.  Average “storm” wave statistics are 



extracted to initialize a JONSWAP spectrum with Hm0 = 1.40 m and Tp = 9.5 s.  In the 

storm test cases, wave height and period are either fixed at these values, increased by 

20%, or decreased by 20%, with peak direction set to shore-normal.  For these and all 

following simulations, spectra are given a moderate directional spread (cosine power 

), with Nyquist frequency 8s = 0.3nyqf =  Hz and JONSWAP peak enhancement factor 

3.3jspγ =  (Table 4).  Both Ceq formulations are tested for each of the nine different wave 

height and period combinations.  Model settings for the morphological acceleration factor 

(fmor) are varied between 1 and 10 in four additional tests using only average wave 

statistics.  The mean water level is fixed at MSL. 

In an attempt to better represent the actual wave climate over the entire 

10-day period, XBeach is run for ten full days in a set of 9 additional “daily” simulations, 

initialized with either daily-averaged or two-day-averaged wave height and period values. 

The tests include three combinations of wave height and period for each day:  [Hm0, Tp], 

[Hm0 + 20%, Tp + 20%], and [Hm0 – 20%, Tp – 20%].  Two different values, 1 and 10, are 

used for the model’s fmor parameter in the daily-averaged wave cases.   

Model skill in the quantitative 2D tests is measured with the following 

ratio (Gallagher et al., 1998): 
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in which  and  are measured and XBeach-predicted bed level change at 

location i, respectively.  A skill value of one indicates a perfect model, a value of zero is 

the same as predicting no bathymetry change, and a negative value is worse than 

predicting no change.  

imeasbdz , ixbbdz ,

In the present tests, XBeach achieves skill values between -0.1 and +0.6 

(Fig. 22).  For simulations using representative storm wave statistics, the best results are 

obtained after about three days of simulation time.  Lower skill values are obtained when 

“storm” wave height and/or period are set to 20% less than the actual measured mean 
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values (i.e., Hm0 = 1.12 m, Tp = 7.6 s), while better skill is achieved with measured or 

larger waves and periods (i.e., Hm0 = 1.40 – 1.68 m and Tp = 9.5 – 11.4 s).  In the ten-day 

simulations using daily and two-day averaged wave inputs, model skill tends to reach a 

maximum after about 4 days, and then gradually declines as the bathymetry is further 

smoothed.  The highest skill value (skill = 0.60) is achieved for an 84-hr “storm” 

simulation with Hm0 = 1.40 m, Tp = 9.5 s, using the Soulsby-van Rijn formulation for Ceq 

and a morphologic acceleration factor = 1.  A closer comparison of modeled and 

measured bathymetries for two of the large-wave, higher-skill cases reveals that model 

performance is better in deeper portions of the surf zone than in the swash zone, where 

contours appear excessively smoothed (Fig. 23), particularly in the 10-day results.  

Simulations with smaller waves achieve a higher skill in the swash region but a lower 

skill farther offshore, where they underpredict bathymetry change. 

b.  Qualitative Evaluation 

A second, smaller set of qualitative, 2D XBeach tests is conducted with 

the goal of hindcasting a recorded megacusp formation event.  On May 23, 2007, three 

days after the conclusion of the RCEX experiment, megacusps were observed by video 

cameras at the Sand City site.  Initializing bathymetry data are available from RCEX 

measurements on May 18, but only video records are available for May 23.  Continuous 

wave data for the time period are obtained from the 13-m ADCP (Fig. 24).  For the mild 

“storm” period from May 20–23, average wave statistics are Hm0 = 1.1 m and Tp = 10.0 s.  

XBeach is initialized with the May 18 bathymetry and then run for three days with a 

morphological acceleration factor of 10.  To limit the complexity of the problem, shore-

normal, JONSWAP-distributed waves are used at the boundary, with spectral parameters 

based on measured wave values.  Offshore Hm0 and Tp are again varied by  about 

the measured values in the same manner as for the “daily” quantitative tests.  Shields 

factor, 

20%±

sfθ , is set to either 0.8 or 1.2, and each of the two Ceq formulations is applied, 

resulting in a total of  12 tests.  Mean water level is again fixed at MSL.  Modeled final 

bathymetries are compared to video shoreline images to gauge XBeach’s success at 

hindcasting an actual episode of megacusp formation.   
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The quantitative test results above suggest that oversmoothing of the 

intertidal zone may be less of a problem for XBeach in simulations during periods 

featuring more moderate waves and shorter simulation periods.  This is confirmed by 

results from the present tests, which provide evidence that XBeach can hindcast such an 

event and reasonably represent the associated shallow water flow field and bathymetry 

shape.  Optimal model results are obtained using the Soulsby-van Rijn equilibrium 

concentration formulation and “storm” waves with Hm0 = 1.1 m and Tp = 10 s, and appear 

mildly oversmoothed when compared to the May 23rd video image (Fig. 25, top panel).  

The modeled final shoreline contour successfully captures the locations of all three 

megacusp embayments that develop in the video view field.  In one of the three predicted 

embayments, the modeled flow field also includes swash zone counter-circulations (Fig. 

25, middle panel).  A comparison of initial and final bathymetries and shoreline contours 

shows that the modeled waves and flow field acted to deepen and broaden three pre-

existing, smaller RO perturbations into larger RO megacusp embayments (Fig. 25, 

bottom panel). 

4. Megacusp Formation 

A range of different scenarios is now used to examine the role of mean daily 

water levels, wave energy, and bathymetry in megacusp formation processes in southern 

Monterey Bay.  Key model parameters are again fixed at settings determined in the 1D 

equilibrium profile simulations.  The two initializing bathymetries for the scenarios are 

based on measured RCEX bathymetry data from the Sand City site recorded on May 1, 

2007 (Fig. 26).  A realistic model bathymetry is prepared by three-point smoothing the 

measured bathymetry data in both cross- and alongshore directions.  A second, idealized 

model bathymetry is constructed by superimposing identical, 100m-spaced rip channels 

onto an alongshore-uniform depth grid created from the alongshore-mean profile of 

bathymetry recorded on May 1.  In the surf zone, amplitudes of the idealized rip channels 

are adjusted to match the vertical range of the measured bathymetry profiles.  On the 

beach, measured alongshore variations are retained in the “real” bathymetry, but in the  
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“ideal” bathymetry they are tapered off to an initial planar beach above MSL + 1.5 m.  

Offshore of the measured region, both bathymetries are extended out to 30 m depth using 

a planar 1:50 slope.   

As noted in Section IIIB, most megacusp formation at the Sand City site is 

observed to occur when maximum offshore significant wave heights are roughly 1.5 – 2 

m.  However, in preliminary 2D trials with XBeach using modeled wave heights of 1.5 m 

or above, surf-zone and beach contours are found to rapidly smooth and straighten until 

bathymetry is nearly alongshore-uniform throughout the model grid.  This oversmoothing 

tendency was also observed in results from the preceding model evaluation tests.  To 

limit such effects during simulations of idealized megacusp formation, only mild-to-

moderate wave climates (i.e., Hm0 = 0.5 to 1.2m, Tp = 7 to 11 sec) are included.  As was 

also mentioned in Section IIIB, such moderate waves have also been found to generate 

megacusps at Sand City, although the cusps themselves may be shallower and/or require 

more time to fully develop.  Tests are allowed to run for longer periods (up to two days) 

to exaggerate the waves’ effects on the beach face.  The implicit expectation is that when 

XBeach is run for a longer time with smaller waves, predicted bathymetry change will 

reasonably match that which would occur with larger waves in the field over a shorter 

duration.   

These tests are targeted at creating both RO and SO megacusps, under a range of 

wave conditions and at multiple, fixed water levels.  Nine different simulations (three 

wave types at three tide elevations) each are run over both the “ideal” and “real” 

bathymetries.  Initializing shore-normal JONSWAP waves at the offshore boundary are 

given three different sets of significant wave height and peak period values:  [Hm0, Tp] = 

[0.5 m, 7 sec], [0.89 m, 9.8 sec], and [1.2 m, 11 sec].  The second set of values is the 

same as were used for the equilibrium profile computations.  Three different fixed water 

levels are employed to investigate the role of monthly tidal cycles and bathymetry:  MSL 

+ 0 m, +0.75 m, and +1.5 m.  Simulations with water levels below MSL are not included 

because wave breaking shifts farther offshore and has little effect on the beach. 

Simulation results are summarized in Fig. 27.  Of the 18 megacusp formation 

simulations, a total of seven scenarios result in the formation of purely SO megacusps, 
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while six scenarios result in the growth of purely RO megacusps.  Two simulations on 

“real” bathymetry result in a mix of both SO and RO megacusps.  In the three remaining 

scenarios, the shallow water regions and the shoreline are washed out, resulting in a 

“flat,” alongshore uniform bathymetry.  Overall results indicate that SO megacusps tend 

to consistently form when fixed water levels are higher, while RO megacusps usually 

develop when the water level is fixed near MSL.   

An examination of the flow fields from two selected ideal bathymetry simulations 

sheds some light on the important differences between the two types of megacusp 

formation.  The first selected simulation generates SO megacusps (Fig. 28) and features 

moderate waves (Hm0 = 1.2 m, Tp = 11 s) and a high water level (MSL + 1.5 m).  Here, 

the “ideal” rip channel bathymetry refractively focuses wave energy onto the shoals and 

strengthens the onshore flow field there.  The refracted waves converge onto the shoals 

but do not fully break until they reach the shoreline.  The concentration of wave energy 

shoreward of the shoals likely results in greater sediment suspension there instead of at 

rip channel locations.  This sediment is advected alongshore by the diverging flow field 

at the shoreline, creating SO megacusps.   

In a second selected simulation, with the water level at MSL, the same moderate 

waves as above (Hm0 = 1.2 m, Tp = 11 s) now generate flows that slowly carve out RO 

megacusps (Fig. 29).  Here, the different breaking patterns over shoals and rip channels 

result in a setup imbalance near the shoreline and converging flow into rip channels from 

the surrounding shoals.  The initial bathymetry (Fig. 29, top panel) includes narrow 

alongshore concavities in the beach shoreward of the rip channels (as seen in blue MSL 

contour line), so that the converging flow in the shallow surf zone creates counter-

circulations in the swash region (Fig. 29, middle and bottom panels).  This diverging flow 

at the shoreline further erodes the initial concavities and steepens them into larger RO 

megacusps.   

The combined results of the nine idealized bathymetry simulations strongly 

suggest that pre-existing beach perturbations are essential to modeled RO megacusp 

formation.  Without the perturbations, modeled counter-circulations do not develop 

shoreward of the rip channels, and RO megacusp formation is not initiated.  As was 
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mentioned earlier, all beach perturbations are smoothed out above MSL + 1.5 m on the 

“ideal” bathymetry (Fig. 26).  As the above reasoning would suggest, the only cases of 

RO megacusp formation on this bathymetry occur for fixed water levels below this cutoff 

elevation (Fig. 27, bottom panel).     

A more complex result is seen in the third selected simulation, which tracks the 

evolution of the “real” bathymetry during a high water period under small waves (Fig. 

30).  In this case, small shore-normal waves (Hm0 = 0.5 m, Tp = 7 s) are shoaled over the 

three-point-smoothed RCEX bathymetry with water level fixed at MSL + 1.5 m.  For 

these conditions, the bathymetry response is decidedly “mixed,” changing at different 

timescales.  After twelve hours, a broad RO megacusp has formed at about y = 600 m 

(Fig. 30, second panel).  The mean onshore flow over an obliquely angled shoal is 

redirected by the bathymetry into a localized alongshore jet near the shoreline that 

removes sediment from the megacusp embayment region.  Qualitative similarities 

between this flow field and the RO megacusp video image shown earlier (Fig. 18, top 

panel) suggest that the simulation may be capturing some aspects of megacusp formation 

processes at Sand City that are missing from ideal bathymetry results.  As time passes, 

this feature is joined by slowly deepening SO megacusps at alongshore shoal locations, 

roughly y = 440 m and 560 m (Fig. 30, bottom panel).  In the field, such a beach shape 

might be expected to develop in the summer over a timescale of several days, when 

milder summer waves gradually modify the upper beach with the aid of sustained high 

water levels seen during periods of maximum range spring tides.   

D. PROCESS-BASED FREQUENCY ANALYSIS 
To investigate the sediment transport processes associated with megacusp 

formation in different frequency ranges, two idealized bathymetry cases from the 

preceding section are selected for a more in-depth analysis—one case that results in SO 

megacusps and a second that features RO megacusps.  Results from a third simulation on 

the realistic bathymetry are also examined and contrasted with the two idealized cases.  

To facilitate this analysis, the sediment transport equations in the XBeach code (Eq. 15 

and 16) are rewritten with their principal terms expanded into two-hour-mean, VLF, and 

infragravity frequency ranges: 
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For each expanded quantity, an overbar indicates the wave-group mean, a carat is used 

for the VLF variations, and a tilde is used for the infragravity variations.  Note that, in 

Eq. 19 and 20, the total sediment concentration in the water column, hC, is expanded as a 

single quantity in the two advection terms.  In the modified XBeach code, the three 

different frequency contributions to each term are updated at every sub-second model 

timestep.  Each term’s mean is computed as a running average over 7200 s (two hours), 

which filters out wave-group and other lower frequency oscillations while still resolving 

variations associated with daily tides and storm events.  The VLF contribution is 

computed as a 250-s running average of each term after its mean has been subtracted.  

This term will include transport due to very-low-frequency, large-scale horizontal surf-

zone eddies discussed in Section IIIA.  The infragravity contribution is then obtained as a 

residual by subtracting the computed mean and VLF contributions from the original 

term’s “instantaneous” value at each timestep.   

The modified version of XBeach tracks the contributions of 90 distinct 

components, including 36 advection components made up of a two-term product (e.g., 

hCu ) and 54 diffusion components made up of a three-term product (e.g., 
y
ChDh ∂
∂

~
ˆ ).  At 

every two-hour output timestep, the adapted model computes and stores two-hour 

average values of each component at all grid locations.  Based on the results of Thornton 

et al. (1996) and Gallagher et al. (1998), it is anticipated that the largest components will 

be those containing just mean terms (e.g., hCu ).  Components involving a product of 

 45



two terms in the same frequency range (e.g., ˆhCv  or 
x
ChDh ∂
∂

~~ ) are also expected to be 

significant in cases where in-phase resonant oscillations create a positive feedback (as 

seen in Reniers et al., 2004).  If the paired oscillating terms are randomly phased, 

however, these components will be much smaller.  The average sediment transport 

contributions due to components that include unpaired oscillating terms (e.g., hCu  or 

y
ChDh ∂
∂

~
ˆ ) are expected to be relatively negligible, since any terms oscillating with periods 

much less than two hours should average out to zero.   

The ten largest sediment transport components of Eq. 19 and 20 for the three 

selected megacusp formation simulations are listed with relative magnitudes at time t = 4 

hrs in Table 5.  As anticipated, the most dominant components in all three selected cases 

are those involving products of mean terms (e.g., hCu ).  More surprisingly, however, the 

next largest transport contributions in the two moderate wave, idealized bathymetry cases 

are from advective components including a product of one mean term and one oscillating 

(VLF) term (e.g., ˆhCu ).  This suggests that the timescales of some VLF oscillations may 

be greater than 30 minutes and thus make a non-zero contribution to sediment transport 

over the two-hour averaging period.  The next largest contributions over idealized 

bathymetry are from components that include either an advective product of two VLF 

oscillating terms (e.g., ) or a diffusive product of three means (e.g., ˆhCv h
CD h
x

∂
∂

).  For 

the advective VLF product, this indicates that some degree of in-phase, resonant 

interaction between the two terms is occurring.  In the third selected simulation with 

small waves over realistic bathymetry, transport contributions from the diffusive product 

components ( h
CD h
x

∂
∂

 and h
CD h
y

∂
∂

) and asymmetry ( ,a uhCu ) are relatively more 

important than the VLF components, likely owing to the lower wave energies and 

increased wave breaking at the shoreline. 
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The majority of sediment transport forcing in all three cases is provided by these 

few largest components.  Sediment transport contributions from components involving 

terms at infragravity timescales are generally several orders of magnitude smaller than 

those from the mean advective transport.  The largest of these, hCu , amounts to at most 

three percent of hCu  at t = 4 hrs, declining thereafter.  Diffusive sediment transport 

components with terms from VLF or infragravity timescales also make significantly 

smaller contributions than the mean diffusion.  In the selected “real” bathymetry 

simulation, the smaller transport contributions are more widely distributed among a larger 

number of components.  Cross-shore turbulent diffusion appears to play a stronger role 

when water level is higher, likely because the waves tend to break more often at the 

shoreline and less often over the shoals for these cases.   

1. SO Megacusps 

Additional, two-dimensional insight into the megacusp formation processes is 

obtained from vector plots of paired u- and v- components on top of the predicted 

bathymetry change due to those components.  For the SO megacusp formation simulation 

on ideal bathymetry, the large mean advective contribution (
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hCu  and hC ) includes 

strong cross-shore and alongshore components in the earlier stages (Fig. 31, top panel), 

but becomes more rip-current-dominated at a later stage (Fig. 32, top panel).  At the MSL 

+ 1.5 m shoreline, the magnitude of the alongshore transport component increases away 

from shoal locations and decreases toward rip channel locations, indicating that the mean 

flow extracts sediment from SO megacusp embayments and deposits some of it to 

augment the megacusp horns.   

v

The longer timescale variations of the second largest SO megacusp transport 

components ( ˆhCu  and ˆhCv ) are apparent from a comparison of the associated early and 

late stage vector transport fields (Fig. 31 and 32, second panel).  In contrast to the mean 

flow, these components contribute to accretion at the SO cusp embayments and erode 

regions shoreward of the rip channels, particularly at the later stage.  As it makes up only 

about ten percent of the contribution from the mean components, however, this accretion 

and erosion will only mildly damp the growth of the SO megacusps.  This portion of the 



transport field continues to vary noticeably from one two-hour timestep to the next (not 

shown), reflecting the long-period VLF flow field cycles discussed above.  Because of 

such variations, the net effect of these components on SO megacusp formation is more 

complex, and they likely play both supporting and opposing roles at different times. 

The third-ranked component pair for SO megacusps is the product of the VLF 

sediment concentration with the mean flow field (i.e., hCu  and hCv ).  Contributing 

roughly 5% of the sediment transport of the mean advective components, this vector field 

also acts to dampen the SO megacusp growth (Fig. 31 and 32, third panel).  Transport 

vectors maintain similar orientations at both early and later stages, but their magnitudes 

vary considerably over time, controlled by the VLF-varying concentration term ( ).  

The fourth-ranked component pair (  and 

hC

ˆhCu ˆhCv ) contributes about 0.5% of the 

transport forcing of that due to the largest components (Fig. 31 and 32, bottom panel).  

These VLF product components play their most significant role shoreward of the rip 

channels, contributing to both erosion and accretion.  Their vector field also varies from 

one timestep to the next, with differences most visible in the alongshore direction (i.e., 

). ˆhCv

2. RO Megacusps 

For the RO megacusp case, the mean advective sediment transport components 

( hCu hCv and ) are again dominant (Fig. 33 and 34, top panel).  As with the SO 

megacusps, the shoaling waves again erode sediment from the shoals (blue regions) and 

deposit it into the rip channels (red regions).  In this case, however, a consistent erosive 

region (blue) also develops at the shoreline shoreward of each rip channel, created by the 

swash-zone counter-circulations discussed in Section IIIC.  The color range on the plots 

has been adjusted to better emphasize these regions. At t = 4 hrs, the diverging transport 

pattern created by these circulations contributes directly to deepening the RO megacusps, 

as indicated by the dark blue shading in the centers of early stage embayments (Fig. 33, 

top panel).  Megacusp growth is relatively slow, as the mean transport components also 

erode the beach shoreward of the shoals.  Later on, at t = 14 hrs, the mean advective 
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transport field remains roughly the same, but predicted bathymetry change becomes 

erosional at all locations across the shoals and along the shoreline.     

Similar to the earlier SO megacusp results, advective components involving a 

product of mean and VLF terms again provide the second- and third-largest transport 

contributions for RO megacusp formation (Fig. 33 and 34, second and third panels).  

Here, however, their role in the cusp formation process appears to be more focused and 

relatively more important than in the SO case.  Contributions from the components 

including the mean flow field (i.e., hCu  and hCv ) are roughly equal to those including 

the VLF flow field (i.e., ˆhCu  and ˆhCv ).  At an early stage, transport patterns for both 

component pairs resemble those of the mean flow, with each also contributing to erosion 

of the RO megacusp embayments (Fig. 33, second and third panels).  Later, although 

both contributions become smaller, their transport fields at the shoreline both act to 

remove sediment from RO cusp locations and deposit it at the cusp horns. In contrast to 

the SO megacusp case, the vector fields associated with these two transport contributions 

are somewhat more stable during later stages (not shown), consistently acting to build the 

RO megacusps.   

The fourth-ranked sediment transport contribution for RO megacusps is provided 

by the advective products of mean concentration and mean wave asymmetry ( asymhCu  

and asymhCv ), which consistently act to erode RO cusp embayments and build up their 

horns.  These contributions are largely directed shoreward, as the onshore transport by 

higher velocities under wave crests significantly exceeds the offshore transport under the 

lower velocity troughs.  Making up roughly 1% of the magnitude of the mean transport 

contribution, the asymmetry components also slightly slow the erosion in shoal areas and 

accretion in rip channels. 

3. Real Bathymetry Results 

A frequency analysis of dominant sediment transport processes in the sample 

“real” bathymetry simulation using small waves highlights the more important role 

played by diffusion and wave asymmetry in such cases (Fig. 35 and 36).  While the mean 
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advective components ( hCu  and hCv ) remain dominant, contributions from the mean 

diffusive components ( h
CD h
x

∂
∂

 and h
CD h
y

∂
∂

) are not far behind and may play a primary 

role in the initial development of the RO megacusp centered at y = 600 m alongshore.  

The mean advective transport field is roughly the same at early and later stages, 

principally acting to erode beach sediment shoreward of shoals and gradually build SO 

megacusps (Fig. 35 and 36, first panel).  At the early stage, the transport due to diffusive 

components (Fig. 36, second panel) is of comparable magnitude to the mean advective 

transport near y = 600 m along the early stage shoreline, acting to erode the RO 

megacusp embayment there.  In contrast, the mean advective transport contribution 

appears accretionary at this location.  Like the mean diffusion, the mean wave asymmetry 

( asymhCu  and asymhCv ) also plays a smaller role in eroding the RO megacusp embayment, 

but like the mean flow, its principal contributions are at alongshore locations of the 

shoals (Fig. 35 and 36, third panel).  The fourth-ranking advective component pair, hCu  

and hCv , make a smaller contribution that declines over time, dropping to 5% of the 

mean advective transport at the later stage (Fig. 35 and 36, fourth panel). 

E. DISCUSSION 

1. XBeach Evaluation Tests 

Based on previous studies, the performance of XBeach in the quantitative skill 

tests seems reasonable.  There have been a number of skill estimates computed 

previously for either XBeach or the similar Delft3D model, including several at the Sand 

City site (Table 6).  Most estimates have been for wave and flow quantities (i.e., Hs, u, 

and v) rather than for bathymetry.  In predicting wave heights, both XBeach and Delft3D 

have achieved high skill levels of 0.83 to 0.93, while for Eulerian and Lagrangian 

velocities the skill range is lower:  0.5 to 0.7.  As modeled bathymetry is based upon 

accurate estimates of both waves and flow, model skill levels would logically be expected 

to be lower for bathymetry than for either waves or flow.  A recent study by McCall et al. 

(2010) obtained skill levels as high as 0.77 for two-dimensional XBeach estimates of 
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hurricane storm surge and overtopping at Santa Rosa Island, Florida.  However, the 

present study focuses on moderate wave climates, for which some assumptions of a 

depth-averaged model (e.g., vertically uniform flow fields and sediment concentrations) 

are less accurate.   

The oversmoothing of shallow water bathymetry by XBeach (Section IIIC, 

subsection 3) likely results from an underestimation of uprush sediment transport in the 

swash zone, relative to offshore transport by the backwash.  This imbalance leads to 

excessive erosion of the beach face and deposition in the rip channels.  Masselink & 

Hughes (1998) conclude from an analysis of field measurements of individual waves that 

the uprush and backwash processes on a beach are governed by different physical 

processes not presently accounted for in available models.  Nielsen, Robert, Møller-

Christiansen, & Oliva (2001) suggest that large horizontal pressure gradients at bore 

fronts may contribute to increased fluidization of beach sediment during uprush, 

augmenting onshore transport.  If so, this could act to balance the additional offshore 

transport during backwash due to fluidization by pressure gradients (Horn et al., 1998), 

resulting in a more stable beach profile under moderate waves.  Representation of these 

effects in the current version of XBeach would require a parameterization to wave group 

timescales.  In the absence of an effective parameterization, the model would need to be 

adapted to run at the timescale of individual waves, which would significantly increase 

computation time.  Both options are currently being investigated by model developers. 

2. Factors Influencing Megacusp Formation 

The preceding model analyses have examined the roles played by mean daily 

water level, bathymetry shape, and wave energy in the formation of megacusps on rip 

channel bathymetry.  Distinct patterns have emerged under which higher mean water 

levels and planar beaches result in SO megacusp formation, while lower mean water 

levels with pre-existing beach perturbations lead to RO megacusps. Smaller waves are 

more often associated with RO megacusps, while moderate waves usually build SO 

megacusps, and larger storm waves rapidly create an alongshore uniform beach.  In an 

effort to reduce the considerable complexity of the problem, potentially important factors 
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including larger wave heights, oblique wave directions, and water level oscillations due 

to daily tidal cycles and individual waves have been excluded from this analysis.  These 

are each briefly discussed in the following paragraphs. 

Because of the model’s tendency to oversmooth nearshore contours, the actual 

effects of moderately large waves (Hs ~ 2 m) on rip channel bathymetries and cuspate 

shorelines are not correctly represented by XBeach.  However, the megacusp formation 

results presented in Fig. 27 suggest that megacusp locations are more sensitive to mean 

water level and beach shape than to wave energy level.  The quantitative tests (Section 

IIIC) showed that XBeach can hindcast measured bathymetry change over several days 

with a reasonable level of skill.  The qualitative testing confirmed that the model can 

generate megacusps using actual wave data, when milder wave conditions are present, 

indicating that XBeach represents the actual flow fields and sediment transport fairly 

well.  It is therefore suggested that the modeled bathymetry evolution under small and 

moderate waves is relatively similar to what would be seen with these larger waves, 

except that it occurs more slowly.   

Oblique wave approach angles, which were also not considered here, may affect 

bathymetry shape and megacusp location by tilting rip channels and shoals relative to the 

shoreline, and by shifting the alongshore locations of setup maxima and shoreline 

erosion.  Measured wave directions indicate that the mean approach angle at Sand City is 

sometimes slightly south of shore-normal.  However, additional simulations with XBeach 

(not included here) suggest that much larger breaking wave angles (greater than 10 

degrees) are required in order to significantly change the outcomes of the presented 

megacusp formation tests.  In modified RO megacusp simulations over idealized 

bathymetry, offshore wave angles of 20–30º tend to focus shoreline erosion into the 

centers of the beach concavities, creating somewhat narrower RO cusps, but otherwise 

the resulting shoreline is little changed from the shore-normal wave case. 

Further test simulations have also been conducted with XBeach to investigate the 

effects of including a 12-hour tidal cycle.  These tests suggest that such variations 

principally act to diffuse the megacusp formation processes in the cross-shore direction 

but do not fundamentally change the outcome (e.g., Fig. 37).  Individual waves are 
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thought to have a similar diffusive effect, which is roughly balanced between onshore and 

offshore directions and may be parameterized in XBeach by modifying the model’s 

diffusion coefficient. 

The preceding section’s analysis of waves shoaling over a “real” bathymetry 

suggests that irregularities of the rip channel bathymetry itself can also affect the 

intertidal sediment transport patterns in important ways.  Rip channels that are slanted 

relative to the shoreline may modify wave refraction patterns and shift resulting flow 

fields to change shoreline erosion and deposition patterns.  Sediment deposits just 

offshore of rip channels (visible as slight “bumps” in contours of Fig. 26, middle panel) 

may focus additional wave energy into rip channels, resulting in increased erosion.  

Nearer to the shoreline, rip feeder channels are often detected at Sand City, but because 

of their smaller scales (sometimes less than a meter wide), these features are most often 

not resolved on measured bathymetries with grids spaced at 5 or 10 m.  By focusing and 

accelerating the converging flow from the shoals into the rips, these feeder channels 

likely contribute to strengthening swash-zone counter-circulations and building RO 

megacusps.  Because they were not included on the idealized (or measured) bathymetry 

for the RO megacusp simulations, model-predicted counter-circulations were relatively 

weak, and the resulting megacusps were narrower than those seen in the field.  

F. SUMMARY AND CONCLUSIONS 

To test the hypothesis that beach megacusps can form shoreward of either rip 

channels or shoals, multi-year video and ADCP time series are analyzed and the XBeach 

2DH sediment transport model is tested, adapted, and applied in a series of nearshore 

simulations.  Using measured average wave conditions, XBeach model parameters are 

calibrated to the mean 1D profile for the steep, terraced rip-channel bathymetry at Sand 

City, California.  When optimal parameter settings are used, the model obtains an 

equilibrium profile that is somewhat flatter and broader than the measured profile, 

differing in elevation by an average of 13 cm.  XBeach is then applied to hindcast two 

cases of measured bathymetry change from the 2007 RCEX experiment.  In the first test, 

initialized with bathymetry from May 1 and using either mean daily waves or mean storm 



waves, the model predicts the measured May 11 bathymetry with a skill of up to 0.60.  In 

the second test, initialized with bathymetry from May 18, XBeach qualitatively captures 

the development of three megacusp embayments measured with video on May 25.  

Although XBeach hindcasts measured bathymetry change reasonably well, it 

oversmooths the swash contours for larger waves (  m), likely because of an 

erroneous underweighting of onshore transport due to the wave bores.   

1.5sH ≥

A series of 18 idealized simulations is conducted to investigate the formation of 

megacusps shoreward of rip channel bathymetries.  Wave energy and mean water levels 

are varied and specific conditions leading to either shoal-opposite (SO) or rip-opposite 

(RO) megacusps are identified.  One real and one idealized rip channel bathymetry are 

used.  In model results, SO megacusps tend to be associated with higher mean water 

levels and larger waves, while RO megacusps occur most often at lower mean water 

levels.  Similar water level data were observed for the two types of megacusps at the 

Sand City site.  However, measured cases of RO megacusp formation at Sand City often 

occurred under more energetic wave climates (Hs = 1.5 to 2 m), for which XBeach either 

predicts SO megacusps or rapid smoothing to an alongshore uniform beach. 

Two cases of megacusp formation on idealized bathymetry and one on more 

realistic bathymetry are selected from the above simulations for further analysis, to 

identify dominant sediment transport contributions to SO and RO megacusp formation in 

the mean, VLF, and infragravity frequency ranges.  At higher mean water levels, shoal-

opposite setup maxima at the shoreline create shore-parallel, divergent transport vectors 

that dig out SO megacusp embayments.  At lower mean water levels, pre-existing beach 

perturbations force rip-opposite mean transport counter-circulations in the swash zone 

that deepen and steepen RO megacusps.  Simulations over the realistic bathymetry 

initially result in a single, steeper RO megacusp, but then develop several SO megacusps.   

In a process-based frequency analysis, transport forcing due to mean advective 

terms is determined to be most important in all three cases, but the location and effects of 

this forcing are strongly influenced by the mean water level relative to existing 

bathymetry.  Surprisingly, advective transport components that vary at VLF timescales 
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also play an important role.  Two-hour means of vector transport fields for such VLF 

components continue to change from one timestep to the next, indicating that some of the 

VLF oscillations have periods greater than 30 min.  For larger waves and higher mean 

water levels, advective transport forcing due to mean wave asymmetry becomes 

significant, while sediment diffusion at the shore break is relatively more important under 

small waves.  A more limited analysis is conducted of other potentially important factors 

such as more extreme waves, tidal cycles, and oblique wave directions.  It is suggested 

that their roles are generally secondary to those played by mean water level, wave energy, 

and bathymetry shape. 

Based on both modeled and measured results, it is concluded that beach 

megacusps may form on rip channel bathymetries shoreward of either shoals or rip 

channels, forced primarily by the mean advective sediment transport and by advective 

transport components oscillating at VLF timescales.  The main transport components 

themselves are shaped by a positive feedback from the changing nearshore and beach 

morphology, in a manner that is strongly influenced by the mean water level.   



 56

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



IV. OVERALL SUMMARY AND CONCLUSIONS 

A combination of field data and modeling is used to test hypotheses about two 

common nearshore bathymetric features, rip channels and beach megacusps, both of 

which are regularly found along the coastline of southern Monterey Bay, California.  

Multi-year datasets from surf-zone video cameras, ADCPs, and offshore buoys are 

analyzed, filtered, and compared to determine whether a linear relationship exists 

between alongshore rip channel migration and alongshore sediment transport.  Making 

use of additional video and ADCP time series along with bathymetric surveys, a 2DH 

sediment transport model is calibrated and applied to investigate the formation of beach 

megacusps and identify the most important sediment transport processes.   

A. ALONGSHORE RIP MIGRATION AND SEDIMENT TRANSPORT 
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Daily locations and average alongshore migration rates of surf-zone rip channels 

are determined from multi-year video datasets at three sites along southern Monterey 

Bay:  Sand City, Fort Ord, and Marina. The CDIP spectral wave propagation model is 

validated by comparison with nearshore ADCP measurements and then used to refract 

measured offshore waves into the surf zone, where the CERC formula is applied to 

generate estimates of concurrent alongshore sediment transport rates.  Initial correlation 

coefficients between daily migration and transport rates are found to be relatively low:  

, 0.44, and 0.38, respectively, at the three sites.  A parallel simulation conducted 

with random Gaussian time series suggests that this is because the migration rates are 

often not distinguishable above the noise associated with digitization of video data.  An 

expanded CERC transport formulation that also includes the effects of alongshore wave 

height gradients is also applied to the Sand City site, where such gradients are significant, 

but it does not significantly improve the daily rate correlations.   

Several different filtering methods are used to compare the migration and 

transport rates in ways that will overcome the noise barrier.  When rip migration and 

sediment transport rates are averaged over eight days, they attain correlation coefficients 

50–100% higher than those found with daily rates.  The moderate increases in correlation 



values emphasize the challenges of accurately representing complex nearshore processes, 

even after data are filtered.  When daily rates are low-pass filtered with a cutoff 

frequency of 1/(8 days), coefficient values slightly better than those from eight-day-

averaged rates at each site are obtained.  This type of analysis highlights important 

longer-period oscillations (such as tidal and seasonal cycles) that might influence 

alongshore rip migration patterns.  When only the 10% of days with the highest transport 

rates are included from each time series, daily correlation results significantly improve at 

all three study sites, suggesting that there may be a more limited range of higher-energy 

conditions over which a linear relationship applies.  Correlation coefficients are highest 

when daily rates are cumulatively summed (integrated):  0.94r = , 0.76, and 0.87 at Sand 

City, Fort Ord, and Marina, respectively.  Cumulatively summed migration and transport 

rates can be used to track the mean migration of each rip field and the net amount of 

sediment transported north or south along the beach at each site.  Plots of these quantities 

suggest that rip migration might lag behind sediment transport, particularly in milder 

summer months when the minimum energy and transport levels necessary for migration 

may not be attained by the smaller waves.  Correlations at the Sand City site remain 

anomalously low for all filtering methods except cumulative summing, likely owing to 

the site’s sheltered location and the effects of nearby irregularities in the shoreline. 

On the basis of the moderate to high correlations obtained between migration and 

transport rates with the above filtering methods, it is concluded that the alongshore 

migration rate of rip channels may be expressed as a linear function of the local 

alongshore sediment transport rate over longer timescales.  

B. MEGACUSPS ON RIP CHANNEL BATHYMETRY 

Model parameters for the XBeach 2DH sediment transport model are calibrated to 

the mean 1D profile for the steep, terraced rip-channel bathymetry at Sand City, 

California.  While previous studies with fixed shoreline models have been unable to 

predict beach evolution, XBeach has a movable shoreline and is capable of simulating 

even smaller-scale erosion and accretion of the beach face and dunes.  In multiple 

simulations, the model is initialized with average measured waves and varying parameter 
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settings and allowed to simulate profile evolution until a quasi-equilibrium state is 

reached.  Optimal parameters are extracted from the simulation that best matches the 

measured mean profile.  XBeach is then tested by hindcasting two cases of measured 

bathymetry change from the 2007 RCEX experiment.  In the first test, the model predicts 

the measured bathymetry evolution over a ten-day period with a maximum skill of 0.60.  

In the second test, XBeach qualitatively captures the development of three megacusp 

embayments that develop over a five-day period following the experiment.  The model 

tends to significantly oversmooth the intertidal bathymetry for larger waves (  

m), likely because of an underweighting of onshore transport due to wave bores.  

Oversmoothing is less of a problem under moderate waves (  m), as long as 

simulations are limited to a few days. 

1.5sH ≥

~ 1sH

The formation of megacusps shoreward of rip channel bathymetries is 

investigated with a series of 18 idealized simulations in which wave energy and mean 

water levels are varied.  One real and one idealized rip channel bathymetry are used.  

Specific conditions leading to either shoal-opposite (SO) or rip-opposite (RO) megacusps 

are identified.  In model results, SO megacusps tend to be associated with higher mean 

water levels and larger waves, while RO megacusps occur most often at lower mean 

water levels.  Video and tidal data from the Sand City site tend to confirm the role of 

mean water levels that is suggested by XBeach.  However, under more energetic wave 

climates (Hs = 1.5 to 2 m), XBeach either predicts SO megacusps or rapid smoothing to 

an alongshore uniform beach, while these conditions are most often observed with RO 

megacusps at Sand City. 

From the above simulations, two cases of megacusp formation on idealized 

bathymetry and one on realistic bathymetry are further examined to identify dominant 

sediment transport contributions to SO and RO megacusp formation in the mean, VLF, 

and infragravity frequency ranges.  An examination of mean flow fields when mean 

water levels are higher suggests that setup at the shoreline is highest shoreward of the 

shoals, where it creates an alongshore-directed, diverging flow field that carves out SO 

megacusp embayments.  At lower mean water levels, converging flow from feeder 
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currents creates counter circulations within pre-existing beach perturbations shoreward of 

the rip channels, and the perturbations are widened and steepened into RO megacusps.  

Simulations over the realistic bathymetry are more complex, initially creating single, 

steeper RO megacusp, but then also building several mild-sloped SO megacusps.   

In a process-based frequency analysis, XBeach is modified to decompose 

advective and diffusive sediment transport terms into mean, VLF, and infragravity ranges 

and track their relative sizes.  Forcing due to mean advective sediment transport 

components (i.e., hCu  and hCv )  is determined to be most important in all three of the 

above selected cases, but the location and effects of this forcing are found to be strongly 

influenced by the mean water level relative to existing bathymetry.  Although their 

contributions are averaged over a two-hour period, advective transport components 

varying at VLF timescales also play an important role, indicating that some of the VLF 

oscillations have periods greater than 30 min.  For larger waves and higher water levels, 

advective transport forcing due to mean wave asymmetry becomes significant, while 

sediment diffusion at the shore break is relatively more important under smaller waves.  

This analysis does not fully address other potentially important factors such as larger 

waves, tidal cycles, and oblique wave directions, but preliminary analysis suggests that 

their roles are less important than those played by mean water level, wave energy, and 

bathymetry shape. 

Based on both field data and model results, it is concluded that beach megacusps 

may form on rip channel bathymetries shoreward of either shoals or rip channels.  The 

primary forcing is provided by the mean advective sediment transport and by advective 

transport components oscillating at VLF timescales.  The changing nearshore and beach 

morphology are strongly influenced by the mean daily water level and can also have a 

significant feedback effect on the main transport components, ultimately making the 

mean transport increasingly dominant over the oscillating components.   
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APPENDIX 

Daily migration-transport rate correlations can be weakened by a variety of 

measurement errors intrinsic to the process of recording these datasets.  As discussed in 

Chapter II, measurement uncertainty for rip locations at each site is expected to be 

roughly Gaussian-distributed.  When migration rates of multiple rips are averaged, the 

mean error is reduced as the number of averaged rip timelines (N) increases:  
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=

= ∑ε ,        (21) 

where εavg represents the error in the averaged rip migration rate for a given day and εn is 

the Gaussian-distributed migration rate error for each individual rip.  For simulated, 

random migration rate errors that are Gaussian-distributed with zero mean and a standard 

deviation of 8.5 m, Eq. 21 results in an averaged error distribution with standard 

deviation ranging from 2.5 m (for 12 rips) to 4.2 m (for four rips).  Positive and negative 

errors can be summed in the equation because they are treated as a continuous sequence 

of values.   

On the southern Monterey Bay coastline, where wave approach is close to shore 

normal year-round, accurate values for incident angles are essential to accurate 

alongshore sediment transport estimates.  Maximum achievable accuracy for breaking 

wave angles, however, is probably ±3º owing to errors in wave direction, shoreline 

orientation, and/or model bathymetry.  While wave directional uncertainties at offshore 

buoys can be ±5º, they are smaller owing to refraction and Gaussian-distributed at 

breaking depth, and thus unlikely to cause a consistent incident angle bias.   

Incorrect shore normal orientation is the most likely source of wave angle bias.  In 

this study, shore normal was measured by multiple methods, including smaller scale 

(O(200m)), shore-based GPS and theodolite surveys, estimates derived from nearshore 

bathymetry contours, and larger-scale linear fits to several kilometers of average coastline 

data.  For the Sand City site, results range from 310º to 312º true north. Although the 

lowest value, 310º, was adopted for this study, comparisons with mean rip migration data 



suggest that the site’s coastline may be even more westward-facing (see Fig. 11).  If the 

shore normal is arbitrarily shifted to 307º, adjusted alongshore transport results then 

exhibit seasonal oscillations that appear more like those in the rip migration data.  At 

Marina, a shore-normal angle of 280º instead of 282º visually improves the fit of mean 

rip migration and net transport.  However, in each case overall correlations of migration 

and transport rates decline rather than increase. 

Errors in modeled bathymetry are the likely source of small (< 5º) directional 

biases that are often identified in CDIP-modeled wave angles.  In southern Monterey 

Bay, several of the NOAA bathymetric surveys used by CDIP were acquired in the early 

1930s (National Oceanic and Atmospheric Administration, 2010b) and depths in some 

areas may have changed significantly.  To check for a consistent directional bias in model 

output at Sand City, mean directions were computed and compared for each frequency 

bin using CDIP-modeled and ADCP-measured wave spectra in 2006–07.  Because the 

directional spread at the site is nearly as small as the uncertainties in ADCP directional 

measurements, a definitive conclusion was not reached.  ADCP mean directions were 

generally similar to CDIP values, and average model bias did not exceed one degree for 

any frequency bin. 
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In the extended CERC formulation calculations, additional errors may have 

resulted from incorrect values of alongshore wave height gradients, estimated for Sand 

City using the large-scale, simplified two-point difference method described in Section 

IID.  The accuracy of that technique was tested by computing gradients over a six-month 

period for smaller-scale alongshore ranges of 1–3 km (5–15 data points) surrounding the 

Sand City site and compared to ,0 /rmsH∂ ∂  values estimated with the two-point method.  

Gradients generated using the shorter ranges were found to have 6–10 times greater 

variability than those estimated using the simplified two-point method, but mean 

gradients over the period were nearly the same (within 5% for the 2–3 km ranges), 

suggesting that the estimate used in this analysis is a reasonable approximation over the 

longer term.   
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Figure 1.   (a) Idealized rip current flow-field (from Haas, Svendsen, Haller, & Zhao, 
2003), including offshore-directed rip current, which cuts a deeper rip channel 
through the alongshore bar.  Shoreward of the rip, feeder currents converging into 
the channel generate diverging swash-zone counter-circulations (green arrows), 
which may contribute to widening the megacusp embayment at the shoreline.  (b) 
Aerial photograph of section of Monterey Bay showing alignment of surf zone rip 
channels (red arrows) with shoreline megacusps (yellow brackets).  Principal 
megacusp features include an embayments, where the beach is narrower, and 
horns, where the beach is wider. 



  
Figure 2.   Three video sites (circles) and two nearshore (13-m depth) ADCP sites (stars) 

along southern Monterey Bay, California, which were used in the study.  
Alongshore distance (km) from the southern end of the bay is indicated for each 
site and various other landmarks.  (The Marina site was shut down in 2009.) 
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waves

Figure 3.   Simplified picture of relationship between alongshore rip migration rate and 
alongshore sediment transport rate.  Rip channels are treated as rectangular holes 
in a flat seabed, each of length x, width y, and depth z.  Waves approaching at an 
angle generate an alongshore current, Vlong, that flows in a direction perpendicular 
to the channel axes.  Alongshore flow removes sediment from the downflow side 
of each channel and deposits it on the upflow side of the next one, so that the 
channels migrate in the same direction as the transport.  The transport rate, qs, will 
be linearly proportional to the alongshore distance, ry t∂ ∂ , traveled by each 
migrating channel:  ( )~s r r rq x y y t⋅ ⋅ ∂ ∂  
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Figure 4.   Example of intensity image and transects used for visually marking 

alongshore rip channel locations.  Top panel shows time-averaged image from 
Stilwell site, transformed to an overhead perspective. White regions correspond to 
surf-zone areas of consistent wave breaking, while offshore-directed, darker 
regions between them delineate rip channels.  Bottom panel plots image intensity 
versus alongshore location for the three colored alongshore transects of the 
rectified image (red: 150 m; blue: 180 m; green: 210 m).  Selected intensity 
minima corresponding to rip locations are indicated with vertical arrows.   
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Figure 5.   Timestacks of rip channel locations at Sand City (top panel), Stilwell 

(middle), and Marina (bottom) camera sites.  In each panel, individual selected rip 
locations are plotted as single points for each day, with alongshore location on the 
y-axis (positive southward) and time on the x-axis.  Three years of video data are 
available for the Sand City and Stilwell sites; only one year is available for 
Marina.  Approximate times of full or partial resets are marked with arrows along 
the top of each panel. 
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Figure 6.   Comparisons of model predictions with ADCP observations at Sand City 

between June 2006 and October 2007 with correlation coefficients (r) and slopes 
(m) in upper left corner.  While the correlation of CDIP- and ADCP-predicted rms 
wave heights, Hrms, at 13 m depth is high (top left), mean direction αmean, 
correlation is relatively poor (top right).  The mismatch of directions is not 
surprising, as both modeled and measured directional spreads at Sand City are 
roughly the same size as the estimated ADCP measurement error (i.e., about ±5º).  
In spite of this, CDIP-model-based predictions of offshore radiation stress, Syx,s, 
and sediment transport rates, qs, in the surf zone correlate well with ADCP-based 
calculations (bottom). Positive is southward for αmean, Syx,s, and qs. 

 

 68



 
Figure 7.   Model-predicted rms wave heights at breaking along the shoreline of southern 

Monterey Bay, averaged over six months.  Data spread (± one standard deviation) 
is shown by dash-dot lines.  Dashed lines on top of main curve indicate mean 
alongshore slopes of wave heights on southern and northern sections of the 
shoreline between Monterey and Marina.  While wave heights remain relatively 
constant over the northern half of this range, there is a wave height gradient (~ 
1/4000) further south, indicating that alongshore variations in radiation stress 
component Syy and setup will have a stronger effect on alongshore transport for 
that section of coastline. 
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Figure 8.   Relative frequency distributions of estimated sediment transport contributions 

over three years at Sand City due to Syx,s (Eq. 1; left panel), ∂H/∂y (second term in 
Eq. 2; center panel), and total overall transport including both contributions (full 
Eq. 2; right panel).  Transport due to Syx,s is almost entirely negative, leading to a 
purely northward alongshore transport.  In contrast, the contribution due to the 
alongshore wave height gradient is smaller, but largely positive.  When 
contributions are summed, the resulting distribution has a less negative mean and 
skewness, but continues to exhibit a strong northward bias. 
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Figure 9.   Time series of measured alongshore rip channel migration and CERC model 

sediment transport for Stilwell Hall site before and after low-pass filtering.  Top 
two panels show unfiltered rates, which have correlation r=0.44 for non-reset 
days.  For bottom two panels, a fourth-order Butterworth low-pass digital filter is 
applied to each time series with fmax=1/(8 days), improving the correlation to 
r=0.66.  Excluded reset days are marked with asterisks on each panel.   
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Figure 10.   Variation of correlation coefficient between daily rates of rip migration and 

sediment transport as a function of the low-pass cut-off frequencies ranging from 
1/(360 days) to 1/(5 days).  Highest correlations are achieved for lower 
frequencies, although peak correlation does not always coincide with the lowest 
frequency, likely because of seasonal irregularities.  The steep drop in correlation 
at Marina occurs at 1/(360 days), because this corresponds to the entire length of 
the dataset. 
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Figure 11.   Mean rip migration (blue, left scale) and sediment transport (green, right 

scale) for the three video study sites, calculated by cumulatively summing mean 
daily rates.  The generally uniform migration and transport direction at Sand City 
contrasts with oscillatory behavior seen at Marina and Stilwell, though seasonal 
oscillations are apparent at all three sites.  Significant northward migration and 
transport are consistently seen at all sites in December to March, while a 
southward trend is generally apparent between September and December.  
Visually identified rip field resets are marked with asterisks. 
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Figure 12.   Wave roses showing mean wave directions and frequencies at 15 m depth, 

offshore of Stilwell site, as estimated by CDIP spectral refraction program.  
Directions are relative to shore normal.  Left panel represents three months in 
summer of 2005 (Hrms,avg = 0.73 m), and right panel represents three months in 
winter of 2005–06 (Hrms,avg = 1.27 m).  Mean approach angle for entire period, 
αmean, is 3º north of shore normal in summer and 2.8º south of shore normal in 
winter.   Black dashed lines on each panel correspond to ±20º, confirming that 
nearly all wave approach angles for both time periods are contained within a 
range that is close to shore normal (white dashed line).  
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Figure 13.   Correlations of mean rip migration, Rm, and net sediment transport, Qs (as 

predicted by the CERC formula) for the three study sites. The linear least-square 
best fit is indicated by the dashed line.  Correlation coefficients are provided in 
the lower right corner. 

 

 
Figure 14.   Simplified picture of relationship between mean rip migration and net 

sediment transport.  Rip channels are treated as rectangular holes in a flat seabed, 
each of length x, width y, and depth z, with alongshore current flowing in a 
direction perpendicular to the channel axes.  If alongshore flow removes sediment 
from the downcoast side of each channel and deposits it on the upcoast side of the 
next one, the channels will migrate in the same direction as the transport.  Net 
transported volume will be proportional to the amount removed from the 
downcoast side of each rip and thus linearly proportional to the alongshore 
distance, ∆y, traveled by each migrating channel:  Qs ~ xz∆y ~ ∆y. 
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Figure 15.   Frequency spectra of daily rip migration rates for inter-reset periods at the 

three study sites.  Eighty percent confidence intervals are indicated by dashed 
lines.  The three-year data set at Stilwell shows a significant spectral peak at 
approximately 0.036 days-1 (28-day period) and suggests a second peak at 
approximately 0.14 days-1 (seven-day period).  A significant peak also occurs near 
0.073 days-1 (14-day period) for the three-year Sand City and one-year Marina 
datasets.  This may signal the influence of the lunar tidal cycle on alongshore 
sediment transport patterns, or the existence of an optimal depth for accelerated 
rip migration.  The noise floor corresponding to a variance of (8.5 m/day)2 is 
shown on each set of axes as a heavy dash-dot line, to emphasize the relative 
strength of these signals. 
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Figure 16.   Comparison of rectified video with measured bathymetry at the Sand City site, 
May 1, 2007.  Blue contours of bathymetry measured with GPS-equipped PWC 
are traced on top of 20-minute time-averaged, rectified image from three cameras 
(dark wedges are regions where the cameras did not overlap).  On video image, 
white areas in the surf zone indicate wave breaking over shoals, while dark areas 
capture deeper rip channel locations.  Light and dark surf-zone video regions 
match the measured shoals and rip channels reasonably well, and the general 
shape of the shoreline is also captured by the video.  Note that beyond the surf 
zone, depth contours are essentially straight and parallel. 
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Figure 17.   Top two panels show significant wave height (Hs) and peak period (Tp) 

measured at 13m depth over 10 days in Aug – Sep 2005.  Third panel shows tide 
for the same period, relative to MSL.  Bottom two panels are rectified images 
from the site at the beginning and end of this period, respectively, and show the 
development of megacusps along a shoreline that was initially straight. 
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Figure 18.   Sample time-averaged, rectified images recorded at the Sand City site.  

Approximate shoreline is traced near bottom of each image (dashed line) and 
offshore is at top.  Arrows mark alongshore locations of megacusp embayments.  
In top image, embayment is shoreward of the rip channel (“rip-opposite” or RO), 
while in bottom image the embayments appear to be shoreward of the shoals 
(“shoal-opposite” or SO).  For the top image (recorded in September 2005, tide ~ 
MSL), Hs values in the preceding days approached 2 m, with Tp around 10 s.  For 
the bottom image (November 2008, tide = MSL + 0.7 m), preceding wave heights 
averaged around 0.7 m, while peak periods ranged from about 6–12 s.  
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Figure 19.   Section of bathymetry from 2001 RIPEX experiment, featuring rip-opposite 

(RO) cusp contours in the intertidal region (green and yellow contours) as well as 
shorter, “swash”-type cusps that start at approximately MSL + 2 m (darker red 
contours, near bottom of image).  The smaller cusps were likely created during a 
period of sustained higher mean water levels (during spring tides) by waves that 
were at least partially focused by refracting over the rip channel bathymetry.  If 
this focusing helped to create the shoal-opposite (SO) embayments marked with 
black arrows above, these data constitute the only directly measured evidence of 
SO cusps at the Sand City site. 
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Figure 20.   Optimal profile from 1D equilibrium profile calibration tests (blue line).  

Initial profile (black dashed line) was created by averaging all measured profiles 
from the Sand City RCEX experiment (red lines), then extended offshore to -30 m 
and onshore to +10 m.  At model equilibrium, all bathymetry elevations changed 
less than 1 mm in 10 hours.  The RMS elevation difference between initial and 
final profiles is 0.13 m, with a maximum difference of 0.95 m.  Except near the 
offshore boundary, the equilibrium profile remains within the vertical elevation 
range of the measured profiles. 
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Figure 21.   Wave conditions recorded during the 2007 RCEX experiment from May 1–11 
(top two panels), including one stormy period that featured moderate-sized waves 
with significant wave heights up to 2 m.  Bottom two panels show video images 
from initial and final days of this period, overlaid with measured bathymetry 
contours.  These data are used in the 2D skill test of the XBeach model. 
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Figure 22.   XBeach model skill values for 31 simulations in quantitative 2D skill test.  
The first 22 simulations are for 3.5 “storm” days, with significant wave height and 
peak period equal to storm values ±20%.  Skill values are lower for the storm 
cases with artificially low peak period and small wave height (e.g., simulation #9 
had Hs=0.8*Hs,storm and Tp=0.8*Tp,storm).  The highest skill values (approximately 
0.6) are attained for waves with Hs=Hs,storm and Tp=Tp,storm, using a higher Shields 
limiter ( sfθ =1.2).  The last nine simulations are run for 10 days using daily- or 
two-day-averaged wave height and period for each day (Fig. 21).  The “max” 
curve (blue) includes maximum skill achieved by each test (generally after 4–5 
days), while the “final” curve shows skill value after full 10-day simulations.     
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Figure 23.   Comparison of measured and XBeach-predicted bathymetries at Sand City, 
May 11, 2007.  Top left image is measured bathymetry.  Final bathymetries from 
3.5-day XBeach “storm” simulation #19 (middle left) and 10-day simulation #25 
(bottom left) are both smoothed relative to actual bathymetry.  In plots of 
measured-minus-modeled bathymetry differences over measured May 11 
bathymetry contours (right panels), the largest model errors result from over-
erosion of the shoreline.   
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Figure 24.   Wave conditions recorded during the 2007 RCEX experiment from May 18–

23 (top two panels), including a three-day period of consistently moderate waves 
with significant wave heights around 1 m.  Bottom two panels show video images 
from initial and final days of this period, overlaid with measured bathymetry 
contours when available.  Both images were recorded at tide = MSL + 0.48 m.  
These data are used in the second, qualitative 2D test of the XBeach model. 
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Figure 25.   Top: Video image of surf zone at Sand City, CA, on May 23, 2007, overlaid 

with XBeach-predicted bathymetry contours (blue) and flow field vectors (red 
arrows).  Model initialized with measured bathymetry from May 18, 2007, and 
average “storm” waves (Hs = 1.1 m, Tp = 10 s) for a 72-hr period.  Yellow line 
shows XBeach-predicted shoreline, which qualitatively captures the video-
detected shoreline shape, including three RO megacusps (centered at ~ 0 m, 75 m, 
and 175 m).  Middle: Zoomed view of leftmost megacusp (lower panel) shows 
that XBeach also predicts swash zone counter-currents in the embayment.  
Bottom: Model-predicted elevation change (color), overlaid with bathymetry 
contours.  Megacusp embayments on May 23 shoreline (red line) have been 
widened relative to original May 18 perturbations (black dashed line). 
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Figure 26.   Bathymetry profiles and plan views for the two idealized megacusp formation 

scenarios, based on measured data from May 1, 2007.  Top panel shows range of 
profiles from three-point-smoothed RCEX “real” bathymetry (red lines) overlaid 
with max/min profiles from “ideal” bathymetry (black lines).  Each bathymetry 
extends offshore to 30 m with a 1:50 slope and on the beach up to 10 m with a 
1:10 slope.  Middle and bottom panels show “real” and “ideal” bathymetry 
contours, respectively, for central, nearshore section of model grid.   
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Figure 27.   Summarized results of 18 XBeach simulations to build megacusps on a beach 

shoreward of realistic (top) and idealized (bottom) bathymetry.  Offshore 
significant wave height values are 0.5, 0.89, and 1.2 m (x-axis), and fixed mean 
water levels are MSL + 0.0, 0.75, and 1.5 m (y-axis).  Blue squares denote the 
formation of rip-opposite (RO) megacusps and red squares indicate shoal-
opposite (SO) megacusps, while magenta represents a mix of RO and SO, and 
yellow is used where bathymetry flattened out with no resultant megacusps.  
Lower mean water levels and smaller waves tend to generate RO megacusps, 
while higher mean water levels and bigger waves lead to SO megacusps. 
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Figure 28.   SO megacusp formation on idealized rip channel bathymetry.  Images show 

bathymetry contours and mean flow field vectors (arrows) at 1, 15, and 30 hours, 
under shore-normal JONSWAP waves with Hs = 1.2 m, Tp = 11 s, and water level 
= MSL + 1.5 m.  Blue line is used for MSL contour. 
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Figure 29.   RO megacusp growth/steepening from existing perturbations on idealized rip 

channel bathymetry.  Images show bathymetry contours and mean flow field 
vectors (arrows) at 1, 15 and 30 hours, under shore-normal JONSWAP waves 
with Hs = 1.2 m, Tp = 11 s, and water level = MSL.  Blue line is used for MSL 
contour and includes narrow perturbations at startup (top panel).  Weak but 
persistent counter-circulation vortices are present in megacusp embayments 
(middle and bottom panels). 
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Figure 30.   Megacusp growth on “real” (three-point smoothed) rip channel bathymetry 

from RCEX experiment.  For this simulation, Hs = 0.5 m, Tp = 7 s, and water level 
is fixed at MSL + 1.5 m.  By t = 12 hrs (middle panel), the mean flow field 
(arrows) has generated RO megacusp at the +1 m contour, centered near y = 600 
m.  At t = 30 hrs (bottom panel), multiple SO megacusps have begun to grow at 
MSL + 0.3 m and MSL + 0.6 m contours (MSL is thick blue contour).  
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Figure 31.   SO megacusp formation (early stage, t = 8 hrs).  Largest four paired 

components of Eq. 19 and 20 plotted as vector flow fields over mean or VLF 
component of bathymetry change zΔ  (color shading), with concurrent bathymetry 
contours (black lines; MSL thicker).  Bathymetry changes izΔ  are estimated from 
negative gradient of each component (white regions are unchanged beach 
elevations).  Vector length on each plot is adjusted by specified “Scale” multiplier 
for viewability.  Top panel: hCu i hCv j⋅ + ⋅ .  Second panel: ˆ ˆhCu i hCv j⋅ + ⋅ .  

Third panel: 
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hCu i⋅ + hCv j⋅ .  Bottom panel: ˆhCv jˆhCu i⋅ + ⋅ .  (Note:  iu ⋅  is 
cross-shore direction and jv ⋅  is alongshore.) 



 
Figure 32.   SO megacusp formation (late stage, t = 18 hrs).  Largest four paired 

components of Eq. 19 and 20 plotted as vector flow fields as in Fig. 31.  Top 
panel: hCu i hCv j⋅ + ⋅ .  Second panel: ˆ ˆhCu i hCv j⋅ + ⋅ .  Third panel: 
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hCu i⋅ + hCv j⋅ .  Bottom panel:  hCv jˆ ˆhCu i⋅ + ⋅ .   

 



 
Figure 33.   RO megacusp formation (early stage, t = 4 hrs).  Largest four paired 

components of Eq. 19 and 20 plotted as vector flow fields as in Fig. 31.  Top 
panel: hCu i hCv j⋅ + ⋅ .  Second panel: hCu i hCv j⋅ + ⋅ .  Third panel: 

ˆhCu i⋅ + ˆhCv j⋅ .  Bottom panel:  asymhCu i hC asymv j⋅ + ⋅ .  Here, minimum color 
scale value has been increased slightly to better emphasize erosive regions 
( 0izΔ < ) in cusp embayments. 
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Figure 34.   RO megacusp formation (later stage, t = 14 hrs).  Largest four paired 

components of Eq. 19 and 20 plotted as vector flow fields as in Fig. 33.  Top 
panel: hCu i hCv j⋅ + ⋅ .  Second panel: hCu i hCv j⋅ + ⋅ .  Third panel: 
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ˆhCu i⋅ + ˆhCv j⋅ .  Bottom panel:  asymhCu i hC asymv j⋅ + ⋅ .   



 
Figure 35.   Megacusp formation on real bathymetry with small waves, Hm0 = 0.5 m (early 

stage, t = 6 hrs).  Largest four paired components of Eq. 19 and 20 plotted as 
vector flow fields as in Fig. 31.  Top panel: hCu i hCv j⋅ + ⋅ .  Second panel:  

C CDh i j
x y

⎡ ⎤∂ ∂
+⎢ ⎥ .  

∂ ∂⎣ ⎦
Third panel:  asymhCu i hC asymv j⋅ + ⋅ .  Bottom panel:  

hCu i hCv j⋅ + ⋅ .   
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Figure 36.   Megacusp formation on real bathymetry with small waves, Hm0 = 0.5 m (late 

stage, t = 42 hrs).  Largest four paired components of Eq. 19 and 20 plotted as 
vector flow fields as in Fig. 22.  Top panel: hCu i hCv j⋅ + ⋅ .  Second panel: 

C CDh i j
x y

⎡ ⎤∂ ∂
+⎢ ⎥ .  

∂ ∂⎣ ⎦
Third panel:  asymhCu i hC asymv j⋅ + ⋅ .  Bottom panel:  

hCu i hCv j⋅ + ⋅ .   
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Figure 37.   Comparison of “real” bathymetry elevations following 30 hours of evolution 

under small waves (Hs = 0.5m, Tp = 7 s).  Top panel:  Bed elevations resulting 
from fixed tide level of MSL + 1.5 m.  Bottom panel:  Differences from original 
elevations (color) when tide level is instead varied between 0 and 1.5 m in a 12-
hour cycle.  Relative to the fixed tide case, the SO megacusp contours under the 
varying tide are spread out in the cross-shore, but otherwise in the same location.  
The contours of the RO megacusp (centered at y = 600 m) are also slightly steeper 
with the fixed tide than with the variable tide. 
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Table 1.   Comparison of rip location statistics.  Summary of subjective differences in rip 
locations, which were selected on 110 daily rectified video images from Jan–Apr 
2005 by four investigators.  MO is M. Orzech and ET is E. Thornton, while 
alternates 1 and 2 are graduate students somewhat less experienced with the 
problem.  Statistics calculated are the same as those in Holman et al. (2006).  In 
the first three data columns, space and time averages (subscripts y and t) are 
presented for the location differences dyi, their standard deviation, and their RMS 
value.  The final two columns show the time-averaged number of rip locations 
matched and missed between each pair of investigators. 

 
Digitizer 
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tyidy  
tyidystd )(

tyidyrms )( tmatchN  
tmissN  

MO-ET 0.3 11.5 11.5 6.1 2.1 
MO-alt 1 1.8 10.4 10.6 5.3 2.3 
MO-alt 2 -0.8 12.3 12.3 5.9 2.4 
 



 100

Table 2.   Summary of measured rip migration and modeled sediment transport rates and 
filtered correlations.  Column 1 lists RMS rip migration rate data at each site, 
determined by the methods described in Section IIC.  Column 2 shows absolute 
sediment transport rate statistics as predicted by the CERC formulation.  
Remaining columns contain correlation coefficients (excluding resets) for original 
daily rip migration and alongshore transport rates (Column 3), using eight-day-
average rates (Column 4), using daily rates from only the highest 10% of transport 
days (Column 5), using daily rates to which a fourth-order low-pass filter with 
cutoff of 1/8 days-1 has been applied (Column 6), and using cumulatively summed 
mean migration distance and net sediment transport (Column 7). 

Migration-Transport  
Correlation 

Daily Filtered 

 
 

RMS Rip 
Migration 
(m/day) 

 
Sediment 
Transport 
Magnitude 
(m3/day)  

 Eight-day Low-
Pass 

High 
10% 

Cumulative 
Sums 

 

1 2 3 4 5 6 7 
SAND CTY        
Max  18 500      
Mean 5.8 68 0.01 0.06 0.07 0.23 0.94 
Mode 4.5 26      
STILWELL        
Max  22 4500      
Mean 6.7 206 0.44 0.60 0.66 0.66 0.76 
Mode 4.5 2      
MARINA        
Max  30 22700      
Mean 9.0 462 0.38 0.58 0.60 0.54 0.87 
Mode 7.5 175      

 



Table 3.   Summary of Equilibrium Profile Test Results 

XBeach Model 
Parameters 

Values Tested Optimal Value 

θsf  
(smax) 

0.8, 1.0, 1.2 0.8 

Ts,factor 
 (tsfac) 

0.05, 0.10, 0.15 0.10 

ua,fac  
(facua) 

0.1, 0.5, 1.0 0.5 

fmor  
(morfac) 

1, 5, 10 1 

hmin 
(hmin) 

0.001, 0.01, 0.1 m 0.01 m 

γ 
 (gamma) 

0.45, 0.60, 0.75 0.45 

 

Table 4.   Fixed Settings for Other XBeach Model Parameters* 

Parameter Value Parameter Value    

instat 4 rho 1025 kg/m3 

break 3 g 9.81 m/s2 

alpha 1.0 thetamin -80º 
wci 0 thetamax +80º 
beta 0.05 nuh ( bν ) 0.1 
delta 0 nuhfac ( νβ ) 1.0 
form 1-2 rhos 2650 kg/m3

eps 0.1 m tideloc 1 
umin 0.1 m/s tidelen varied 
dtheta 10º tint varied 
morstart varied left 0–1 
zs0 varied right 0–1 
C (Chezy) 40 m0.5/s D50 0.0004 m 
vardx 1 D90 0.0006 m 
dx, dy varied nx, ny varied 
s (cos pwr) 8 gammajsp 3.3 
fnyq 0.3 Hz   
* All parameters not included here or in Table 3  

are set to their default values. 
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Table 5.   Dominant Sediment Transport Components for Megacusp Formation 

“Ideal” Bathymetry “Real” Bathymetry 
RO Megacuspsa SO Megacuspsb RO/SO Megacuspsc 

Rank 
(t = 4 hrs) 

Term Rel. Size Term Rel. Size Term Rel. Size 
1 hCv  100 hCv  100 hCu  100 
2 hCu  42 hCu  90 hCv  78 
3 ˆhCv  37 ˆhCv  30 

asymhCu  37 

4 hCv  27 ˆhCu  19 CDh
x

∂
∂

 
31 

5 ˆhCu  15 
asymhCu  17 CDh

y
∂
∂

 
7 

6 hCu  13 hCv  12 hCu  6 
7 ˆhCv  12 CDh

x
∂
∂

 
11 ˆhCv  6 

8 ˆhCu  5 hCu  9 CDh
x

∂
∂

 
5 

9 CDh
x

∂
∂

 
4 CDh

x
∂
∂

 
6 hCv  5 

10 
asymhCu  3 ˆhCv  4 ˆhCu  3 

Simulation Wave and Tide Settings: 
  a. Hm0 = 1.2 m, Tp = 11 s, tide = MSL 
  b. Hm0 = 1.2 m, Tp = 11 s, tide = MSL + 1.5 m 
  c. Hm0 = 0.5 m, Tp = 7 s, tide = MSL + 1.5 m 

 

Table 6.   Recent Skill Tests with XBeach or Delft3D 

Source Model Location Parameter Skill range     

Reniers et al., 2006 Delft3D Sand City, CA Hs 0.83 – 0.85 

Brown, 2009 XBeach Sand City, CA Hrms 0.84 – 0.93 

Brown, 2009 XBeach Sand City, CA uE, vE 0.47 – 0.72 

Brown, 2009 XBeach Sand City, CA uL, vL ~ 0.5 

McCall et al., 2010 XBeach Santa Rosa Island, 
FL 

zbed -2.69 – 0.77 
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